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PREFACE

This document describes the mathematical requirements for a generdl
carth-orbital mission analysis system tentatively called tae Goddard
Mission Analysis. System (GMAS). A related document is the GMAS Functional
Eequirements Document, released 10 October 1974, which summarized the top-
level requirements on the system. Previous to that, various documcnts
reviewing mission analysis software and techniques were issued under this

effort.
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1. INTRODUCTION AND SUMMARY

The Goddard Mission Analysis System (GMAS) is to be a coordinated
system of computer software that.can be used for the mission analysis of
general earth-orbital missions. The word "system" implies a set of com-
patible and complementary elements (data base, utility routine library,
program modules, executive programs, interactive graphics equipment and
usage, etc,) whose independent functions and mutual interfaces are care-
fully designed to produce an operation which generates the required data
as reliably, efficiently, and easily as possible.

GMAS is to be capable of héndling all three phases of mission
analyses: pre-flight, in-flight, and post-flight. The basic executive
programs will be similar for all phases but different modules and models
will be available ror each phase, The in-flight capability will of
course require real time responsiveness necessitating sp2cial mathemat-
ical techniques as well as the effective use of interactive graphics and
displays.

GMAS will be capablé of operating in several missioa analysis modes.
It will analyze launch opportunity assessment, orbit selection, maneuver
targeting and analysis, trajectory propagation, force model sensitivity,
mission profile generation, parametric scans, linear error analysis and
Monte Carlo error analysis. It will be capsble of performing these
studies at the levels of depth required by the mission phases discussed
above,

GMAS is to be applicab.e to all carth-orbital missicas eventually.
Initisl development however is to be directed toward four classes of
earth-orbital missions: synchronous missions (e.g., CTS, SMS), sun-
synchronous missions (e.g., ERTS), drag missions (e.g., AE), and shuttle
applications missions. Techniques and software applicable to the first
three mission classes currently exist at GSFC. However, these elements
are somewhat fragmented and overlapping; the goal of GMAS is to identify
the elements common to all three classes and try to coordinate them in an
effective general system. The last class is intended to direct attention
to identifying the new mission analysis problems associated with the pro-
posed shuttle era.

There are many attractive features of a general system like GMAS if

it can be effectively implemented. A modular skeletal structure permits

1-1



. the basic programs to be easily extended to new problems, techniques and
models as they are identified. The commonality of the basic structures
with respect to the mission phases results in ease in transferring from
the pre-flight to the in-flight to the post-flight phaseé of mission
analysis. Since the basic structures are used for several mission clésses
(i.e., synchronous, drag, etc.), program users can effectively move from
one mission type to another with a minimum of difficulty. Since many of
the routines are used by several modules or programs, improvments made to
these basic routines immediately improves all the programs that use them,
leading to a reduction in costs to maintain the software. Furthermore,
this constant use of the same routines and modules results in quick iden-
tification of programming errors and thus leads to a continual increase
in the reliability of the systems., These advantages can however only be
obtained if the system is carefully designed initially so that the time
and core requirements are held to a minimum and the prcgram structures

are clearly defined.

The first document issued in this initial design effort was the
Functional Requirements Document (FRD) which provides a high-level descrip-
tion of the functional requirements to be levied on GMAS. The FRD is cur-
rently undergoing revision after review by GSFC personnel. The continually
improved document should also improve the efficiency of the actual program
construction when begun by having all the mathematical formulation down on
paper before beginning any of the coding, therebv demonstrating such

things as the required data flow or multiple uses of sinyle modules,

This document, the Mathematical Specifications Document (MSD), is the
second in the series. Its function is to identify, organize and display
the mathematical models and techniques of GMAS in a single, self-contained
report. This will allow knowledgablz= personnel to review, critique and
improve the models and techniques of GMAS before beginning the expensive

and sometimes seemingly irreversible process of program coding and assembly.

It is also hoped that this document be of broader wse than simply in
GMAS development. It is recommended it be maintained as a summary of cur-
rent mathematical techniques used in mission and operations analysis and
support, Then it could foster communication within the mission analysis
group by enabling the specialists in each area to see the techniques used

by their countevparts in othey disciplines and other projects. It could
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also serve as an introductory guide to the mission analysis area for un-
familiar personnel such as new employees, non-mission analysis special-

ists or new contractors.

To accomplish these objectives the editors have tried to make this
document as flexible and complete as possible, We have tried to estab-
lish a format which allows growth as easily as possible. To improve this
we intend to change the numbering of pages, figures, tables and equations
to a section basis (e.g., Table 9,1-1, Equation 5.4-3) instead of on the
chapter basis (e.g., Table 9-1, Equation 5-24) currently used. This
would facilitate the required changes and extensions that we feel are

necessary to make this a useful document and not just a dust collector.

For completeress certain topics :hat have already been addressed in
detail in GSFC or other contractor studies have been summarized or re-
produced in this report, hopefully always with proper credit given to the
original source. In the interest of devoting as much time and effort to
the technical analysis and evaluation, the contractor was instructed to
minimize the editoral, art and reproduction costs. Thur, where appropri-
ate, the original text, equations and artwork from thes: other sources

has been directly reproduced in this report.

The next release of this document from the contractor is due in
January 1975. This release will still be in draft form. Eventually GSFC
intends to publish this document formally through their own facilities.
Any comments or suggestions should be forwarded to the GSFC Technical
Monitors: Dr. C. E. Velez or Mr. C. R. Newman, Code 582, Goddard Space
Flight Center, or the MMC Program Manager: Dr, E. D. Vogi, Telephone:
(303) 794-5211, Ext: 5471.
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2.  GMAS MISSION SET

Table 1 below defines the four classes of missions to be addressed
during this effort. The ordering of the classes is immaterial as the

four classes will be treated equally.

Index Class Specific Examples
1 Synchronous SMS-A/B, ATS-F, CTS, IUE, SEOS
2 Sun-Synchronous ERTS-1/B, SMM, HCMM
3 Drag AE-D/E, SMM
4 ‘Shuttle Applications ==

TABLE 2-1. Applicable Mission Classes

2.1 Synchronous Missions

The first class covers synchronous missions where a critical
problem is the large apogee motor burn. It includes the Synchronous
Meteorological Satellite (SMS) Missions A and B. SMS-A was launched
17 May 1974 and SMS-B is schedulgd for launch ian Cctober, 1974 (Delta
launches). Problems with SMS-A (with a six-sigma low apogee in the
transfer orbit) pointed up the needs for better apogee maneuver target-
ing and quick, convenient, parametric search techniques for contingency
situations in-flight. The Applications Technology Satellite (ATS-F)
was launched (May, 1974) and placed into orbit by a Titan vehicle.
The Communications Technology Satellite (CTS) is a joiﬁt venture
between the U.S. and Canada to be launched in late 1975. GSFC is

responsible for getting the satellite on station and Cauada takes over

at that point. The International Ultraviolet Explorer (IUE) mission
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to be launched in mid-1976 is unusuzl because it is both eccentric and
highly inclined to the equator. The Stationary Earth Observatory Satellite
is a geostationary equatorial orbiter with minimal north-south drift to
provide contfnuous U.S. coverage,
2.2 Sun-Synchronous Missions

The second class of missions includes the ERTS-type missions which
are repeating, sun-synchronous missions with orbital periods of slightly
less than two hours. The first Earth Resources Technology Satellite
(ERTS-1) is flying now and ERTS-B is scheduled for launch in early 1975.
Both are to have 18 day repeatiﬁg ground tracks and the :targeting of
ERTS-B will probably involve some phasing constraints to get a net 9 day
pattern between the two spacecraft. The Heat Capacitance Mapping Mission,
now in preliminary planning, is a sun-synchronous mission that is to
obtain nesar globzal coverage in about eight days. The Solar Maximum
Mission (SMM) lzunched in 1978 has a sun synchronous orhit that is low
enough (about 500 km altitude) to also qualify it as a drag mission.
2.3 Atmospheric Drag Missions

In additidn to SMM, the drag missions of the third éategory include
the Atmosbheric Explorer (AE) Missions D and E, launched in March and
Septeﬁbet, 1975, respectively. These missions involve the gradual
lowering of perigee into the atmosphere by a sequence where perigee is
lowered for one orbit, raised to the previous altitude while data is
processed and then if results are safe and predictable, relowered to
the new altitude. Some targeting is required in these missions to move

periapsis to a location where correlated tests with rockets may be

made.
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2.4 Shuttle Applications

The fourth class of missions is a somewhat special category as it
is intended to start identifying the mathematical mcdels and techniques
required for shuttle-era missions.‘ Since GSFC will predominantly be in
the role of the shuttle-customer (and not the shuttle-operator) its re-
quirements will largely be to transfer the GSFC satellite from or to orbit
where it may be serviced by the shuttle. Possibilities for more compli-
cated orbit phasing maneuvers thus arise. Also the requirement for re-
,startable engines for many of these maneuvers may nece;sitate the use
of longer burns using lower thrust and perhaps vehicle pitching during

the maneuver itself.
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3. SYSTEM STRUCTURE AND INTERFACES

The basic software components of GMAS may be organized into a hierarchy as

follows:
Element Description
Routine The smallest unit of software.
Module A group of functionally related routines.
Program A collection of modules (and possibly roatines) linked to
perform a major task.
Subsystem A set of complementary and coordinated programs.
System An integrated set of subsystems.

Under these definitlons GMAS is a subsystem within the FDS overall system. The
detailed design of the system and subsystem structures and interfaces is normally
performed after detailing the mathematical specifications of the system. However,
these specifications can most efficiently be developed in the context of some
structural definition; albeit preliminary. This section will briefly summarize the
tentative FDS/GMAS structure.
3.1 FDS Interfaces

The effective d2sign of GMAS requires an understanding of its relation to
the other suBsystems of the Flight Dyna@ics System (FDS). The FDS will consist
of three subsystems: the Goddard Trajectory Determination System (GIDS), the
Attitude Determination ;nd Control System, and the Goddard Mission Analysis
System (GMAS).

The GIDS has the prime responsibility for the orbit determination function.
It processes telemetered tracking data to estimate the spacecraft orbit and asso-
clated uncertainty. In the performance of this task it also includes ephemeris
generation (mainly high precision), data simulation, and ortit comparison capa-
bilities. The principal interfaces between the GTDS and the GMAS are that GIDS
supplies GMAS with the estimated orbit, covariance, and state transition matrix,

while GMAS supplies the GTDS with the nominal maneuver and predicted orbit.
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The Attitude Determination and Control System (ADCS) 1is responsible for the
real-time determination and control of the vehicle attitude. There is an active
interface between the ADCS and GMAS with GMAS supplying the ADCS with the desired
maneuver attitude, ADCS responding with a commanded and achieved attitude, and
GMAS determining the acceptability of that attitude.

The basic interface device between the three subsystems will be a common
data base in which data required by the three elements will be stored.

3.2 GMAS Modules

A well-designed set of modules is the catalyst that turns a software library
into an effective, coordinated system. The GMAS modules provide the basis for
a general, flexible; and easily-extended system and allows the simple construction
of mission-peculiar software as it is identified. These modules may be divided
into two categories as follows:

GMAS Comoutational Modules

Trajectory Propagation

Optimization and Targeting Algorithms
Orbit Parameter Computation
Iﬁstantanecus Parameter Computation

GMAS Executive Modules

Parametric Scan.Control
"Monte Carlo Analysis Control
Targeting/Optimization Contro:

The computational modules includ; those software packages that perform general
mathematical computations that are required by several programs. The basic com-
putational module is the trajectory generator which is used bty all the programs.

An equally important module for mission analysis is the tavgeting and optimization
module for maneuver :argeting and orbit selection. Other modules will include

the orbit parameter module which computes mission analysis parameters (e.g.
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shadow periods) from crbital elements, and the instantaneous parameter module
K‘ ‘which computes missioa analysis parametet-'s (e.g., elevation from a tracking station)
from the instantaneous state of the vehicle.

The second class of modules are the executive modules wnich control the data
flow and bookkeeping for specific types of studies. This class includes three
similar modules cohtrolling parametric scans, Monte Carlo anaiyses, and targeting
and optimization.

3.3 GMAS Programs

With a proper design of the computational and executive modules defined above,
it is a relativeiy easy job to assemble those modules with supporting (and some-
times mission-peculiar) routines to produce effective GMAS programs. The major
GMAS programs are briefly described below.

GMAS Programs
8 Trajectory Propagation
Launch Opportunity Assessment

Mission Scan

Maneuver Targeting and Analysis
Migsion Profile Generation
Linear Error Analysis

Monte Carlo Aralysis

Trajectory Propagation Program: This program will contain the trajectory

propagation module and the control logic (initialization, Input and output con-
trol, etc.) necessary to operate it. Trajectory propagation will be available
for a variety of force models, mathematical formulations, and numerical quadrature

schemes,

Launch Opportunity Assessment: This program will have the capability to

' scan the launch period/launch window opportunities while evaluating a variety
of constraints such as shadowing, attitude during coast and maneuvers, orbital
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lifetime, etc.

Mission Scan Analysis: This program will be capable of evaluatiﬁg a series
of orbits defined by a variety of control parameters including impulsive maneuver
parameters, launch profile parameters such as launch azimuth and coast time, and

orbital elements for broad orbit selection.

Maneuver Targeting and Analysis: This program will be similar to the pre-
{

vious program except chat it operates in a targeting or optimization mode instead

of a scan mode. It will select the optimal maneuver or mission satisfying equality

or inequality constraints while optimizing or requested performance criteria.

Mission Profile Generation: This program will be respoasible for the

detailed mission profile generation. It will be capable of operating in either
the single-case or scan mode, generally with the high- or medium-precision propa-
gation modules and with the instantaneous parameter computation module. Its

output will define predicted station passes, shadows, site overflies, etc.

Linear Error Analysis: This program will be capable of oerforming pre-
flight error analyses for both tracking and maneuvers. The tracking analysis
will mirror models actually used in the GIDS in its analysis of the ability to
track the vehicles. The maneuver error analysis will ideatify the impact of
injection covarianceé and orbital maneuver execution errors on fuel budgets
and mission design margins.

Monte Carlo Analysis: This program will be composed of the Monte Carlo

control module, the selected trajectory propagator, and the desired parameter
computation modules. It will be responsible for flying a given mission sequence

repeatedly, sampling from input error models to simulate the realities of errors

on maneuvers.




‘ 4, EXECUTIVE MODULES

The purpose of this contractual effort was to summarize the
mathematical specifications of the GMAS. However, in the develop-

- ment of those specifications some consideration was given to several
modules performing key executive functions. The detailed definition
of the logic and structural design of these modules will be performed
in the subsequent design phase of GMAS. However, a toplevel view of
several of these modules is worthwhile to demonstrate how several of
the computational modules such as the trajectory propagators, the
maneuver targeting algorithms, and the mission analysis parameters
may be tied together by executive structures. The executive modules
discussed below include the following:

1. Parametric Scan Module
2. Monte Carlo Module
3. Targeting Module
' 4. Mission Synthesis Module
4,1 Parametric Scan Capability
‘ A frequently-used technique in all phases of mission analysis
is the parametric scan. In parametric scans, certain parameters
(called control! parameters) are varied in a systematic manner
(generally over a grid of values) and resulting parameters (called
performance parameters) are evaluated for the series of control
parameters. The control parameters are generally associated with
maneuvers and the performance parameters are generally mission
analysis parameters associated with the resulting orbits.
The parametric scan capability required for the GMAS is sum-
"marized in Table 4.1-1 on the following page. Generally four types
of parametric scans are needed: launch window analysis, launch orbit
selection, standard orbit selection, and maneuvér targeting. These

- studies are distinguished by the particular control and performance
parameters desired. In launch window analyses, the launch date and
launch time-cf-day (or longitude of the ascending node) are system-

atically varied to determine launch periods having adequate daily
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launch windows with acceptable orbits. In launch orbit selection,
the launch date is held fixed while the standard launch parameters
are varied within reasonable limits to determine the range of
feasible (with respect to reasonable launch constraints) orbits.
In the direct orbit selection, no attempt is made to tie the orbit
selection process to launch; the control parameters  are simply the
orbital elements (or equivalent parameters such as perigee or apogee
altitude) varied to optimize the systems design or science return of
the mission. The fourth category of maneuver targeting is also
related to orbit selection as the maneuver controls are generally -
selected to optimize the resulting orbit. Three types of maneuvers
control constraints are indicated in Table 4.1-1 corresponding to
unconstrained controls, and controls limited by fixed V magnitude
and fixed attitude. The performance parameters in all three cases
are identical however. -

The logic flow for any of the scans is essentially identical.
The macrologic is indicated in Figure 4,1-1. Whether a general
structure can or should be constructed or whether distinct programs

should be developed will be a subject for the system design phase.

Define'(input) Increment Propagate Evaluate Print
controls k control trajectory computed and/or
initial values parameters to event parameters store
increments __ ug u =u + Au time(s) if p(u) and/or[ " |case
increments Au systemat- necessary profiles data
parameters k ically

Figure 4,1-1,

h
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4.2 Monte Carlo Capability

A second type of executive control required by the GMAS is a
Monte Carlo capability. Monte Carlo analysis is an integral part
of maneuver analysis to determine the sensitivity of orbits and
their related parameters (e.g., shadowing, station coverage, orbit
correction requirements, etc.,) to errors made during, the maneuver
itself.

The types of Monte Carlo analyses needed may be categorized
according to the error models used to describe the maneuver (See
Table 4.2-1). Certain maneuvers employ a covariance matrix for )
the error model. Such is the usual case with the injection maneu-
ver from the parking orbit onto the transfer or targeﬁ orbit., The
impulsive error model would generally be used in analyzing a maneu-
ver which takes place during a short increment of orbital true
anomaly such as an apogee maneuver or the transfer orbit for a
synchronous mission. The finite burn maneuver error model might
be required to model a fixed-pitching-rate maneuver used in inject-
ing from a parking orbit onto a synchronous mission transfer orbit,

if no injection covariance matrix were available for that maneuver.

Error Model Error Parameters

Covariance * Covariance matrix (6x6) defining deviations in
post maneuver position and velocity

Impulsive . Error in impulsive OV defined by:
Maneuver proportionality error - k AV

resolution error -s LV
pointing errors - o and §

‘Finite Burn Error in state following maneuver computed by
integrating sample burn defined by:
.thrust - T -
mass - m

time of initiation - t
duration of burn - At
pointing angles during burn - d,e

]

Table 4.2-1, Monte Carlo Error Models
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Regardless of error models employed, the Monte Carlo analyéis
proceeds similarly. The error model is sampled repeatedly to
generate post-maneuver states. These states are then propagated
forward evaluating desired performance variables (See Table 4,1-1).
After generating a statistically-reasona le number of samples, the
statistics of the resulting performance variables (ipcluding pro-
bability of success) are re-constructed. The macrologic is essen-
tially identical to that of the parametric scan (Figure 4.1-1)
except for the second computational block in which the systematic
incrementation of the control variables is replaced by the statis-
tical sampling of the desired error models. The mathematical

details of this sampling are discussed in Section 14.3.
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4.3 Tatgeting Capability

A third executive capability involves the targeting and opti-
mization of orbits and maneuvers. This capability is similar to
the‘previous two capabilities (parametric scan and Monte Carlo scan)
in that a series of different orbits are propagated, periodically
evaluating a user-defined set of mission analysis parameters. The
difference is that the sequence of orbits is determined to iteratively
improve a performance function instead of following a.user-specified
variable grid (parametric scan) or randomlyngenerated error model
samples (Monte Carlo analysis).

The targeting'module structure thus is identical to the structure
pictured in Figure 4.1-1 with one major exception: the second block
is replaced by the targeting iteration algorithm. The mathematics of
this algorithm are described in detail in Chapter 11. The other pri-
mary computational modules include the trajectory propagators (described
in Chapter 6) and the mission analysis parameter computations (discussed
in Chapter 7).

As with the previous two executive capabilities, there are several
distinct studies for which a targeting capability would be desirable,
These essentially parallel the studies summarized in Table &4.1-1.

Referring to that table only the launch window study is probably
not amenable to targeting and optimization analyris.

The performance function and related constraints of such studies
are sufficiently complex and nonlinear to make an iterative targeting
algorithm less than effective. Also, the mission designer's subjective
evaluation is frequently required in the trades associated with launch
window studies. The other studies listed in Table 4.1-1 are all well-
suited to Optimizgtion analysis. In the categorization of parameters,
the "fixed parameters'" would be held constant at the input values
during the optimization. The "varied parsmeters' would be the control
parameters solvéd for during the process., The "performance parameters"
would be combined and weighted to determine the performance function
which would then be minimized (or maximized) during the optimization

process.
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The preferable mode of implementation would be to develop the
targeting/optimization algorithm in a self-contained, modular package
that could be used easily in any of these applications. The executive
structure that manages the targeting algorithm, the propagator, and
the parameter computational modules would be quite similar for each

of these studies but may have certain peculiarities for each study.
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4.4 Trajectory Synthesis Module

for a new round of programming with ecach new problem. The cost of such
uncoordinated software development in terms of analysis, coding, verifica-
tion, and documentation is entirely unacceptable. The alternative is to
develop a coordinated yet flexible system of executive and computational
modules which the user can access to solve his mission analysis problem
via a user oriented data deck. Such an approach not only reduces software
development costs but also guarantees uniformly high quality analysis and

a standard format for supplying data and reporting results.

The object of the mission analysis system is to eliminate the need

Fundamental then to this '"data-driven' mission analysis system is
a means to specify an arbitrary trajectory with a minimum of user supplied |
data., Such a capability is essential to the targeting/optimization error %
analysis, parametric scan, and profile generation executive programs. This %
system-wide demand dictates the need for a computational module to synthe-

size a full range of earth-orbital trajectories from input data alone.

To be of substantial benefit to the user, such a trajectory synthe-
sizer must be able to function from precisely that data which characterize

the trajectory in the user's mind. In other words, the user must not be

required to have detailed knowledge of the trajectory to specify it to the
system. Typically, the mission analyst thinks of earth orbital missions

in segments or phases separated by well defined events. For instance, a
synchronous equatorial mission consists of the phases and triggering events
shown in Table 4-1, Notice that all of the triggering events are charac- %
terized by a specific variable assuming a prescribed value. This triggering ‘
~variable is not nccessarily time., Hence the synthesizer cannot require the

user to specily the start time of cach phase. The minimal input data struc- |
ture for the trajectory synthesizer is built upon this event/phase conceptual

basis for specifying trajectories.

In order to build the trajectory as it goes, the synthesizer must
propagatc the equations of motion numerically in time. Next all of the
simulation data must be input by phase. Data can be carried over from |
one phase to the next but each phase must be supplied with all of the

cssential information pertaining to enviromment, vehicle characteristics,
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initial state conditions, control variables, and propagation techniques so

‘ that each trajectory phase can be constructed from its specified triggering

event to the corresponding event for the succeeding phase,

TRIGGERING EVENT
NO. DESCRIPTION VARIABLE PHASE DESCRIPTION

1. | ascent burnout time parking orbit coast

2.} first transfer lagitude transfer ellipse injection
burn ignition 0

3.] first transfer weight of transfer ellipse coast
burn termination propellant

4, | second transfer lagitude apogee motor circularization
burn ignition (07) maneuver

5.1 second transfer weight of post circularization tracking
burn termination propellant coast

6.| phasing burn time phasing maneuver

‘ ignition

7.| phasing burn time phasing coast
termination

8. | synchronization longitude synchronization manpower
burn ignition

9.| synchronization time coast in final synchronized
burn termination orbit

Table 4.4-1. Trajectory Characterization by Phases and Triggering

Events for a Synchronous Equatorial Mission

The actual phase specification adheres closely to the user's event/

phase concept of trajectory structure.

The simulations are given the same

programmable quality of actual trajectories, that is, subsequent phases can

desired mission objectives.

be adapted to accommodate the outcome of prior phases in order to acheive

The ordzr of occurrence of each phase is deter-

mined by its triggering event which is turn defined as the assumption of a
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specified value by the triggering variable. 1In order to treat precedence

relations among Lhe phases, cach tripgering cvent must be assiguned a

sequence number by the user. The events are constrained to occur in order

of sequence number subject to certain simple rules on event type,

To allow the flexibility in specifying the prospective ordering of

phases, threec event types can be defined.

1.

Primary events are the main sequential events of the simulated
trajectory. They must be assigned integral sequence numbers
and must occur in increasing order of these numbers.

Secondary events are contingency events that may or may not
occur during their associated primary phase. They are assigned
non-integral sequence numbers, the integral portion of which
coincides with the associated primary event and the fractional
portion determines the relative order of the secondary events.
A secondary event occurs during its associated primary phases
whenever its triggering variable assumes its specified value.
However, the occurrence of a secondary event nullifies all
other secondary events of smaller sequence number. The occur-
rence of a primary event nullifies all the secondary events
associated with its preceding primary event,

Roving primary events are events which have no specific prede-
cessor primary event. They are assigned an integral event
number and can occur anytime after all of the primary events
with lower sequence numbers have occurred. They provide the
capability of interrupting the trajectory at any time regard-

less of the phase number.

In order to detect the end of the current phase, the trajectory

synthesizer must monitor a candidate set of triggerent events

1.
2.

the next primary event,

all the secondary events associated with the current primary
cvent which have not becen nullified by the occourence of a
subsequent secondary event,

all the roving primary events whose immediately preceding

primary events have occurred.

The trajectory synthesizer uses an fterative schene to determine

the precisc occurrence time of the next triggering cvent. The triggering
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variables of all the events in the coandidate set are monitored at each prop-
agation step in time. If one of these passes from above to below or from
below to above its specified value between the current and previous propaga-
tion steps, it is singled out for precise determination of the cross over
point., The macrologic involved is shown in Figure 4-1 for finding the first
zero component of an event triggering vector g(t), Note that the quadratic
interpolation logic makes use of two back values of the triggering variable
in addition to the current one. The equations for the interpolating poly-
nomials are given in Section 11.3.2 on the acceleration projected gradient

algorithm.
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5. COORDINATE AND TIME TRANSFORMATIONS
5.1 Introduction

This chapter addresses the coordinate and time trams{ormations to
be available in GMAS. It essentially reproduces the development of the
same subject in References 5-1 or 5-2 but with some reduction in details.
Generally the basic equations are identical but some of the derivations
have been deleted. Additions to the material in Reference 5-1 are the

inclusion of two additional coordinate frames: the mean ecliptic and

equinox coordinate frame and the vehicle-fixed coordinate frame.

Section 5.2 describes the GMAS coordinate systems,, Section 5.3
defines the basic coordinate frames and their transformations, Section 5.4
defines the utility coordinate systems and their transformuations and

Section 5.5 addresses time systems and transformations.
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5.2 ‘COORDINATE SYSTIIN DESCRIPTIONS

5.2.1 Body-Ccntered Inertial (Geocentric, Selenocentric, or Planciocentric)

Origin: Center of the body
Reference Plane: Earth equatorial plane of epoch
Principal Direction: Vernal equinox of ¢poch
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Figure 5.2-1. Body-Centered ILnertial
Coordmate System

Rectangular Cartesian Coordinates (see Figure (5.2-1):

x-axis ~ the principal direction

y-axis ~ the normal to the x~axis and z-axis to form a right-handed syvatem

z-axis ~ the normazl to the earth equator of epoch in the direction of tiw

angular momentum vector

Within the following formulation, R, X, Y, and Z designate the position vector and
Car tesian coordinates referred to the mean cquinox and equator of 1950.0. Simi-
larly, r Ty Xy Ve, and z . designate the position vector and Cartesian coordinales
referred to the mean equmox and equator of epoch and r, ¥, y, and z designate the

position vector and Cartesian coordinates referrcd to the true equinox and cqua-
tor of epoch.

Spherical Polar Coordinates:
r ~ radial distance from the origin to the point being measured

a ~ right ascension, tan™! (y/x)
> ~ ceclination, sin™! (2/r)
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5.2.2 Body=-Cenlered Rolating (Geogaphic or Selenographic)

1y ot

Origin: “Center of the body
‘Refercence Dlane: Body's equatorial plane (plane perpendicular to the
axis of rotaticn at a given epoch)

Principal Divection: Intersection of the prime meridian with the equator

z

b

CREENWICH

Figure 5.2-2. Body-Centered Rotating
Coordinate System

Rectangular Cartesian Coordinates (see Figure 5.2-2):

X,-axis ~ the principal direction
y,-axis ~ the normal to the x, and z, axes to form a right-handed system

z,-axis ~ the direction of the axis of rotation toward the morth
celestiad pole

Geocentric Spherical Coordinates:

r, ~ radial distance from *he origin to the point being moeasured
A ~ longitude measured east from the prime meridian, tan™! v, /.\l )
) ]
> ~ latitude measurced from the equator, sin-! (zl/rb)
- ']

Geodetie Spherical Coordinates (sce Figure 5.2-4):

h - the perpendicular distance from the surface of the ellipsoid model to
the point being measured

\ - the same as londitude measured in the geocentric sphierical coovdinates

¢ 7 the geodetic latitude angle between the vector normal to the ellipsoid
model passing through the peint of interest and the cquatorinl plane

~ " the geocentric latitude of a point on the ellipsoid

Geodetic coordinates are used to reference a point from the surface of a body
that is an cllipsoid o1 revolution rather than a sphere.
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5.2.3 local Dlane System

Origin: Center of the reference Lody

Reference Planc: The axes are defined independently of a refevence
planc. The X Y1, plane becomes the "reforence
plane"

Principal Direction: The principal axis is along the radius vector from the
origin to the satellite

2
T

Figure 5.2-3. pgcal Plane System
Rectangular Cartesian Coordinates (sece Figure 5.2-3).

X,g~axis - the principal dircction

ylp—a.\'is ~ the axis displaced from the inertial y-axis by the satellite's right
ascension and lying in the original x-y plane

zlp-axis ~ the direction that forms a right-handed system with x, andy, .
It is displaced frem the inertial z-axis by the satellite's declination

sSphexical Velocity Coordi nates:

v~ the velocity veetor's magnitude (1))
*~ the flight path angje measured from the principal direction to the
velocity vector

A ~

the azinwath angle measured clochwise from the Sip NS o the
projection of the veloeily vector on the Yip = 7y, plane
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5.2.4 Tepocentrice Loeal 'l‘;nigcnt (li:ml/l\'orth/l’p)

Origin: Observer (topocentri <)

Reference Plane: Planc tangent to the cllipsoidal earth model at the

observer
Principal Direction:

Local east direction on the vlane tangent to the carth
model!

Figure 5.2-4. Topcentric Coordinates
Rectangular Cartesian Coordinates (see Figure 5.2-4):

X, ~axis ~ the principal direction
¥y~ axis ~ theaxis lvine in the reference plane that points north

Z, ,~axis ™ the upward direction alony the geodetic vertieal
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‘ 5.2.5 Orbit Plane
’ Origin: Center of the reference body
Reference Plane: The plane of the orbit

Principal Direction: The radius vector from the origin to the satellite

Figure 5.2-5. Orbit Plane Coordinates

‘ Rectangular Cartlesian Coordinates (sce Figure 5.25):
X, axis ~ the direction along the satellite's position vector, ¥ (R)

Yo maxis ~ the direction normal to X,, = 7, plane (T}
z,,axis ™ the direction along the vector r x r (N)

The Cartesian components of the orbit plane system when tae satellite is at
perifocus are denoted X Yo and z, (sce Figure 5.2-6) or (P,Q.N).

Yp(Q  Xop (R)
A

Yop (T)
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o Xp(P)
N
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' . Figure 5.2«6. Orbital Parameters
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5.2.6. Kevlerian Elenients

Origin: Center of the reference body

Reference Planc: Equatorial plane perpendicular to the central body's
axis of rotation

Principal Direction: Vernal equinox or prime meridian at a given epoch,

Keplerian Elements (sce Figures 5.2-5 and 5.2-6):

a ~ the seinimajor axis

e ~ the ccecentricity specifying the elongation of the orbital conic
section -

i ~ the inclination specifying the orientation of the satellite's ovbital

planc {o the equator of the central body

the riglit ascension of the ascending node, i.c., the angle

measured eastward along the equator between the principal direction

and the point where the satellite crosses the equator traveling in

a northerly direction .

w ~ the argument of perigee, i.c., angle between the ascending node

and the perifocai point measured positive with increasing mean

anonialy

the mecan anomaly, i.c., product of the satcllite's mean angular

motion and the time elapsed since perifocal passage

0~

M~
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5.2.7 Vehicle Reference System*

Origin: Pre-determined fixed point in vehicle called the reference
point origin (RPO)

Reference plane: Plane normal to longitudinal axis containing RPO

Principal direction: Reference direction within body

)
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Figure 5.2-7., Vehicle Reference System

Rectangular Cartesian Coordinates (See Figure 5.227):

XR ~ reference direction within body

YR ~. direction completing right hand system (ZR x XR)

ZR ~ longitudinal axis fixed in body

* N
This system is used to define tank locations, mounting angles, center-
of mass locations, thruster locations, unit thrust vectors, body-fixed

sensors, etc. (See Reference 5-3 or 5-4).
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' *
5.2.8 Vehicle Attitude System

Origin: Center of gravity of vehicle

Reference Plane: Plane normal to spin axis or longitudinal axis of
vehicle
Principal Direction: Projection of reference directioa onto reference p

plane

C\erew o A

Diwcivown j
e

Figure 5.2-8. Vehicle Attitude System
Rectangular Cartesian Coordinates (See Figure 5.2-8):

x“»’\ ~ (Y\ XZ.(\

Yo ™ \Zx_ x UR\ where U_ is known vector in refecence direction

R

%« ~ vehicle longitudinal axis

*This system has been selected as a compromise between the GTDS format
(Reference 5-1) where the Z-axis (third axis) is always the '"special”
axis and the attitude system of OAMP (Reference 5<3) where the X-axis
(fi;st axis) is the vehicle spin axis. The '"reference direction" used

in OAMP ié the Earth-vehicle direction (because the direction so defined
is the nadir point -- center of Earth disk -- used for vehicle pitch
control)., Other "reference directions" considered might include vehicle-

to-sun or local north.
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5.3 Basic Reference Framed
5.3.1 Introduction
The basic reference frames of GMAS include the following:

1. 1Inertial equator and equinox of 1950

2. Mean equator and equinox of date

3. Mean ecliptic and equinox of 1950 and cf date

4. True equator and equinox of date

5. True equator and prime meridian
This section defines these frames and the transformations required to
move from one to another. The fundamental reference frame is the
inertial equator and equinox of 1950 to which the other frames are
referenced. The other frames are frequently used to describe satellite
states.

A coordinate frame is defined by specifying the origin of the
coordinates, the reference plane, and the principle direction in the
reference plane. A detailed discussion of the background of coordinate
transformations is provided in Reference 5-1 or 5-2 from which much of
this chapter is excerpted. This chapter will siﬁply summarize the
mathematical details of the above transformatioans.

Some discussion is required to define the relations between the
above frames. The equinox, %\, is defined as the intersection of the
planes of the earth's equator and the ecliptic. The equator is defined
as being normal to the earth's pole. The primary motion of the equinox
is called precession and is due mainly to the precession of the earth's
pole. The precessional motion of the mean equinox is due to the combined
motions of the two planes, the equator and the ecliptic, that define it.

The motion of the celestial pole or of the equator is due to the
gravitational attraction of the sun and moon on the earth's equatorial
buige. It consists of two components: iunisolar precession and nutation.
Lunisolar precession is the smooth long-period motion of the equator's
pole around the ecliptic pole and has an amplitude of approximately 23.5
degrees and a period of approximately 26,000 years. Nutation is a rela-
tively short-period motion that carries the actual, or the true, pole
around the mean pole in a somewhat irregular curve w.th an aplitude of

approximately 9 seconds of arc and a period of approximately 18.6 years.

5.3=1
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The word "mean'" indicates that nutation is being neglected. The motion
of the ecliptic (i.e. the mean plane of the earth's orbis) is due to the

planets’ gravitational attraction on the earth and consists of a slow

rotation of the ecliptic. This motion is known as planetary precession
2 seconds of arc

and gives a precession of the equinox of approximately 1

a century and a decrease of the obliquity of the ecliptic, the angle

between the eclipuic and the earth's equator, of approximately 47 sec-

onds of arc a century.
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5.3.2

and equinox of .date by correcting only for precession.

Mean Equator and Equinox of Date

The 1950.0 coordinates arve transformed into the wmean equator
Denoting the

1950.0 coordinates by R and the mean of date by T we have

Ty = AR (5.3=1)
where the elements of A are
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where

I the Fplemeris time in Julian centuries (36525 Julian days) ¢lapsed from

epoch to 1950.0 (J1 213 3282.5)

JD of t - 2333282423357 (5.32%)
) 36525
The time derivative of A is assumed to be negligble. The velocity
coordilates are transformeu as follows:
: . ~ o (5.3-53)
rE AR
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5.3.3 Mean Ecliptic and Equinox of Date

Denote the state vector in the mean equator and equinox of

date frame by (Eil iﬁ) and in the mean ecliptic and equinox of date

frame by (EEC , iEC)' The sets of vectors are then related by the
equations
= 5.3=6
e = Mg ( )
Lo~ M Xp (5.3-7)

where the transformation matrix M is given by

1 0 0
M=]0 COSE sing€ (5.3=3)
0 -sin€ cosE

where the mean obliquity € is given by

€ = 23.%52294 - .°130125 x 107 T - .°l64 x 107
Tf: +.9503 x 1070 T (5.3-9)

and where
T ~ the time in Julian centuries (jo)’) JULLdn Days)
elapsed from epoch to 1900 Jan 0 (LT =
Jb 2415020.0).
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5.3.4 True Equator and Equinox of Date

The transformation from the mcan equator and cquinox of date
(5.3.2) to the true of date system involves correcting for the
nutation cffect. Nutation is measured as cyclic changes in the
obliquity, the angle between the ejuatorial plane and the ecliptic,
and the longitude of the equinox, These changes in obliquity,&e,
and longitude, §y, are assumed known. They are input to GIDS by
fitting polynom:als through the JPL ephemeris data (Ref. 5.3-3).

Denoting the true of date coordinates by r, r and the mean
of date by (EE’ EE) we have

r = NEE (5.3=10)
£ = NC
= =k
where the clemento of N are
”ll = CcCoOs S‘,‘"
"|2 - = Nin .\v' cos T
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and where
is the mean obliquity given by (5.3-9)

€

o~ —

€ =€ + 3¢ is the true obliquity

8V is the difference between the .ongitude of the true

and mean equinox-of date

with §€ and 8¢ computed as described abvove.




5.3.5 True Equator and Prime Meridian

The transformation that relates the true of date coordinates
to the body-fixed coordinates accounts for two separate effects.
The first relates the true vernal equinox to the prime meridian of
the rotatiig planet by means of the angle ay, variously called the
Greenwich sidereal time, the Greenwich hour angle of the true equinox
or epoch, or the date right ascention of Greenwich (see Figure 3-9).
The second effect, called polar motion, accounts for the fact that
the pole of the body-fixed axis, zp, does not coincide with the
body's spia axis, the pole of the true of cpoch geocentric axis.
The first of these effects transforms the true of date coordinates
to pseudo body-fixed coordinates. This pseudo coordinaie system
would be precisely the body-fixed axes if z = z, that is, if polar
motion is omitted.

5.3.5.1 Psuedo Body-Fixed Transformation

_ The true of date coordinates transform into the pseudo
body-fixed coordinates as follows

b! = Bl ; (5'3-1‘)')
cos 1 sin a, 0

B‘(a‘) = {-sina Cos,“u 0 (5.3-13)
0 0 1

where the true Greenwich sidereal time is obtained from the mcan
Greenwich sidereal time

1gy © UTT + G" 38™ 45836 + 8640184542 T + 070929 T} (5.3-14)
UT1 ~» seconds of UT1l time (see Section 3.4.5) elapsed from

January 1, 1950, OR yTL

T av the number of Julian centries elapsed from 12 hours
UT1 January 0, 1900 (JD = 2415020.0) to the UTLl time
of Epoch,

by applying the correction ay = oy + JH (5.3=-15)

where

AH = §¥ cos(€ +56€) (5.3-16)

Differentiation yields the velocity transformation

. =By Tt 1'31 3 (5.3-17)

where (@g * ccnstant)

'
‘»n
=
9}
o]
)
o
-~J

a (5.3-18)
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5.3.5.2 Body-Fixed Transformatien

The principal axis of the earth (angular momentum vector) is
not coincident with the spin axis (angular velocity vector), and it
moves with respect to the latter causing the polar motion effect. The
path of the pole on the earth's surface is 'semi-regular" but unpredic-
table due to random shifts in the earth's crust, etc. The motion of
the pole is given with respect to the pole at some established epoch.
The pole at th2 established epoch is referred to as the adopted pole
(Pa), and the present position of the pole is referred to as the truc
pole (Py). Therc are scveral adopted poles in the literature. Due to
small size of the polar motion correction (it takes place in a square
less than 50 wmeters wide), the polar region of the carth may be consi-
dered a plane and the traunsformation from one adopted vole to another
reduces to a simple plane translation. Neglecting the ecarth's slipht
curvature at the pole, establish a left-handed rectangular coordinate
system centercd at PA with xp axis directed along the Greenwich meri-
cian and. the y, axis along the meridian of 90° west. (Sce Figure 3-10).
The coordinates of the instantaneous pole PT 2re measured in terms of
Xp and yp components using units of seconds of arc. The measurements
of xp and yp 2re performed by the International Polar Motion Service
and published by the U.S. Naval Observatory.

tp =By T, (5.3-19)

Since xp and yp are small, all cosine terms are equated to unity, all
sine terms equated to their angle, and all products neglected. Thus

By becomes 1 0 x W
‘l
B,=y 0 1 -y (5.3-20)
"% Y 1
5.3.5.3 True of Date to Body-Fixed -
The complete transformation between the true of epoch coor-
dinate system and the body-fixed system is given by
where B) is presented in Equation (5.3-13) and By in (5.3-20).
The time derivative of B, is negligibel, therefore the
velocity is transformed as follow:s:
ry = 3231 r + BZBl r (5.3=22)

where B; is given by Equation (5.3-19).
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5.3.5.4 Mean of 1950 to Body-rixed

The total transformation from mean equinox anc equator of
1950.0 coordinates to body-fixed coordinates is the product of the

transformations in Equations (5-1), (5-10), (5-17), and (5-19)

Fos By (x,v ) Bya) s N(Sedd) - AL 0L E) R. (5.3-213)

Hereafter this transformation is written

T, =GR (5.3-24) |
where E
) |

H - Bz(xp.y“)lly(u.) (5.3-25)

G N (3¢, 3) A Cyr e 50 (5.3=26)

The matrices G and H depend only on time (not on satellite
position). The matrices N, A, and B; vary so slowly with time that
their rate of change can be ncylected in velocity transformations,
The matrix B; changes in proportion to the carth's spin rate: thus
its time rate of change, given in Equation(5.3-19) must be accounted
for. 1In GTIDS the G matrix is svnthesized during preprocessing cowmpu-
tations using information fr:om an ephemeris tapce. Its elements are
stroed as polynomial functions of time for use during problem exccu-
tion. The H matrix is optionally computed cither precisely as shown
in Equation(5.3-20) ,or approximately by neglecting pelar motion (e.g.,
B2 =1).
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5.4 Utility Coordinate Systems

5.4.1 1Introduction

Utility coordinate systems are those systems that are used

internally in GMAS for the convenient computation of certain parameters.

These systems are discussed in the order of the illustreted descriptions

of Section 5.2.

1.
2.
3.
4.
5.
6.

The transformations addressed are as follows:
Spherical-Cartesian

Geocentric-Orbit Plane

Earth-Fixed Geodetic

Earth-Fixed to Topocentric

Keplerian-Cartesian

Inertial-Vehicle Axes

Both the transfoirmations and the Jacobians of the transformations are

provided.
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5.4.2 Spherical-Cartesian Transformations

S5.4.2.1 Spherical to Cartesian

Using the spherical position coordinates, r, 1, and », that are defined in Section
5.2-1,the transformation to Cartesian coordinates is seen irom Figure 5.2<1 to be

X cos ¢ cos o
yil=r |cos ¥sin.ae . (5.4=1)
2 sin 2

To transform the spherical velocity coordinates, V, -, and A, described in
Section 3.2.3, it is convenient to transform to the local plaae coordinate system
(see TFigure 3-3) and then to the body-centered inertial Cartesian coorvdinate
system. If thc_ lecal plane coordinates, x L? ylp , and zlp , ave f{ixed inertially

(nonrotating), r ~ may be expressed as
P

;‘lp_1 cos o

b

.

T, = S’lp =V |{sinAsing|. (5.4-2)

cos Asin

lp__
The transformation hetween the local plane and the Lady-centered inertial
Cartesian coordiate =ystems is

Iy T ol (5.4=3)
where
COS Y cos a cos ) sina ERTAIN
C:{-sina cos « 0 . ) (5.4-4)
-~ SInv cos a ~-Sindsina cos 8

Since the local plane system is fixed inertiall the velocity vector in

Equation (5.4-2) may be transformsd to the body-centered inertial Cartesian
axes by means of the transformation C as follows

TaCTE, (5.4-5)
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5.4.2.2 Spherical to Cartesian Partials
The partial derivatives of x, y, 7, X, ¥, and 7 with respect to 1,6, 2, V, A, and
A arc - _
2T _T
R (5.4-6)
—)’
or . S 5.4%7
. s | ¥ (5.4-7)
L o
r.\in o COoS u - =2 Cos i
2T '
ab“"r SIS Sin g = -zsina (5.4'0-3)
-cos T2
.(:)_:l._.:_a_?: ilzii:(_) (5.4-9)
AV A opr dr
-y
27
_— X (5.4=10)
da A
_ 0
-zcosu
2T . {_isina (5.4=11)
da
V(cos 3¢os § -=cos Asin. sind)
2r T (5.4-12)
oV VvV
sin ;P (sinAsind cos a-cosAsin a)—‘
.‘.l..
-'-_~;\ -V sinSrsin Asin A ein oy cos Acos o) (5.4-13)
abr A cens Tonva
and
I
cos u(cos ¥ sindssindcos FcosA) +sinucos IsinA
T . . A . - - . La=ld
i ::-\’ sina (cos & sin o+ sin & cos Scos A) -cos acos Isin A (5.4-14)
< LY '

Sin .- sin & - cos S cos & cos A
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5.4.2,3 Cartesizn to Spherical

The inverse of the preceding transformations is deseribed in the following text,
“The spherical radius, v, is given by

RN 5 RN R (5.4=15)

From Figuve 3-1 the right ascension, ¢, and declination, &, of ¥ are |

p 112 K r
S'\n.\.:i COSS:':_l_.)(_ —L.Sbs— (5.4-10)
r r ' 2 2
and
X . :
sina=.__Y Cos a = o —— 0Lag2n. (5.4-1D
%2 4 2 Ix? , o-
N 1) X% + 3

The right ascension is measured positive east {rom the inectial x-axis, The
declination is measured positive north from the x-y plane.

The velocily vector's magnitude is

V = ) (5.4-18)

and the azimuth, A, and flight path angle, 3, arc obtained from

sinA:(xyl_—y D cosAY I 2 X (A% ) 0gAs 2, (5.4e19)
rly
— - : - _l n
sin[:':lrx T cos f=F""7 25'3_3 (5.4-20)
1 vV rv
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5.4.2.4 Cartesian to Spherical Partials

The partial derivatives of Yya, 5, V, A, and 3

with vespect to x, y, 7, X, y, and
Z arc

er 7T .
XS (5.4-21)4
B T
-y‘
da 1
—= e | X (5.4=22
T (g J
L O
F— zx !
N .
= 1 —|-zy (5.4=23)
¢ro {;S‘:‘y: i i
L
L 7 iyH
oy 5.4=24
—:‘—.—' 0 ( )
(SN

. .. M]-
V(rz-ziy-(xy-u &)(xi—z.'\ 2L ‘)/r
v/
A 1 (

L S . C vz 425
T LTS SX(FZ-z i) 4 (xy -y X yz-z."*"\"l»_r>/r 34
(V2 =12y (x4 y?) '

(Xy - v ox) (NT 0wy o2

L. g N
P_,E - 1 T -?T) (5.4=26)
or r2 ‘\1.' i..’ r
v da, (5.4=27)
oT ar or
=T
Y. r (5.4=28)
AT v
— . . T
(2y-yz)
oA ] (X 7 = 72 %) (5.4=29)
oT r (\72 - rl) :
(v k- x5
and . T
; : 1 TY VY _wy . ' (5.4-30)
o 2 ]\,2 - 12 Vv?



5.4.3 Geoceentric to Orbit Plane

The unit vectors in the X, oo Yo, and 2 directions (sce Figure 5.2«5) that are
measured in the body-centered inertinl Cartesian system are

U=-—

v, |
V=is (5.4=31)
o Fox T,

ITo N nu!

where Y‘u and }‘O ave the earth-centered pesition and velicity vectors used to de-
termine the orbit plune coordinate system. If Equations (S.4=-31l)are expanded,
they vicld the following transformation reliations between the orbit plane co-
ordinates and the body-centered inertial Cartesion coordinates

r LET (5.4-32)
op
where
[, U, U]
E=IV, V. V| . (5.4=33)
Woowoow
Ly

Regarding the orbit plane system as fixed inertially, the velocity transforms as
follows

Top © ET (5.4=34)

and the position and velocity pax'tiais are

== —" =E (5.4=35)



5.4.4 Earth-Fixed Geodetic Transformations

The transformations between the body-centered inertial

Cartesian system and the geodetic axes system (described in Section

5.2.2) involves modeling the earth's figure.

5.4.4.1 Geodetic to Earth-Fixed

R
e

Suppose (h,A,$) given. Then compute N =

where R, is the equatorial radius of the earth amd e 1is the

Vi-el sintd

eccen-

. Rp\2
tricity of the carth figure wich ol = 1-(§2) = f(2-£f) where Rp is
e

the polar radius and f is the flattening of the earth.

x‘,' (N + h) cos pcos \
v, | = | (N +h) cos & sin\

z, (N+h=-0¢2N)ysin

The partial derivatives of x, y,,, and 2 with respect to h, N, and ¢

3 xb,/a I Ccos ¢ cos \

21 Cos ¢ osin s
Lﬂin o J

Jy,/eh

o 7,/2h
)

- - ' '

NS - (N + h)y cos [ san \ ]

Iy e e (N4 ) cos g cos
L\" 7, O l : 0
eNg ,_1 - - NN s ‘,-}
. N e? cos?
Nooh -
1 2 Py '

H 3 +o - ¢ . !
A ¢ s . !-‘itn;’\ln\'
4 ——

aitd

{oz, 7o

/ e )
R \h N (1 _ ‘,2) \l , v hlllw._A— Wwos o
1 - ("2 .\'):.“ ,'/

(5.4=30)

are

(5.4=37)

(5.4<38)

(5.4-39)
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5.4.4.2 Larth-Fixed to Geodetic

In transforming gcodctic coordinates to carth-fixed coordinates, the point of
interscction of the height normal vector and the cllipsoid is given. In trans-
forming from cartii-fixed to geodetic, this point is not known a priorvi. This
complicates the transformation. Since there is no sect of cquations in closed
form giving this ‘ransformation.

Two solutions are presented. The first solution is iterative and can yicld any
required degree of accuracy. The second solution is a wruncated hinomial ox-
pansion that may be uscd when accuracy requiremeoents are not so stringoent,

The iterative technique is used primarily to determine readetic tracking station
positions where high accuracy is required. For this use (and for near carth

satellites), the applO\lnl wtion 11 <« N is satisfied, and since the eavth's figure
is nearly spherical, ¢” << 1,

Introducting t, the z, intercept of the normal veclor, it can be shown that
ts o2 Zl»' (5.4'41)

Using Faquation(s. 4=41)as an initial estimate for t, the tollowing sequence of
cquations may be solved iterative 2ly to yield a solution for h oud.:

2oz, st (5.4=42)
N h= iyl 22 (5.4=43)
sin¢>=Nzt) (5.4e44)
+ h
. Rc
N = — (5.4=45)

12 c?sint

t=Ne?sing. (5.4-46)

Upon convergence of , ¢ and h ave obtained from Fquatlorb (5.4-43) and (5.4=4%)
The longitude A, is

y .
AN=tan"t [ 2) (5.4<47)
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A second, computationally simpler, procedure for computing the values of
and h to a specified point, P, isuseful when accuracy requirenwonts ave less

stringent, The latitude, ', s

tan

. 7"\ zll

(1 -0y x0 (1 -¢Y) J\f: Ty‘l‘:-

The geocentric latitude is approximated by

PR A
Jheoos

The (spheroid) light is

where

R, (1 -

/,vl
in~? K_'. .
rh

)

The pavtial devivatives of b,

) i1 - (2 [ - fz) cos?

C,oand Lowith respecttox v, and 2

. S AR Y
h \“ S, '\1)1
2 .71 ol T PR ¢ E A
SR 'y, e a {1 ef) SEno S cos o T o 3\"/(‘.\,‘
(1 - ¢c¥sin? )32 sin? J
\luﬂ‘/h / J¢7A\zh
A0 72 % .
[N 3 )«h ‘\l\
IN/DY |- l_ _ N
b 2 2 b
(X, + V)
E\k/a z, 0
/:md
o v . —
! W -
)(’/‘ x" xb Z\)
2
~ N -t
2y/Cy . — a ) -y, 7 .
v Yo7 [ 202 (42 L 29 ,q b b ‘
\Xb 4 '\b (1' c ) (xb + )b) A l\,
AN 2 .2
\1,,/\ lb (xb + )b)
L - L.

S.4e9

(5.4=49)

(5.4=50)

are obtained

(5.4-51)

(5.4=52)




5.4.5 Earth-Fixed to Topocentric Local Tangent (iast, North, Up)

The topocentric local tangent system, described in Section 3.2.4, is used in pro-
cessing ground based observation data, The transformation from geocentric
carth-fixed coordinates (x, , y,, z,) to jocal tanuent coordinates (X, , ¥,.» 7, )
requires a translation along the geocentric radius vector to the station and a
rotation of the axis through the station's longitude and latituds angles. The
carth's shape and station identification parameters are defincd as follows

'F. the body-Tived coordinate:: of the station
i Che pecdetie ltiiude of the statton (posative eon thy
S0 he peacontriv Ditptade of the ditien

\, ° the longitude of the station (uative easiy
h -~ the height of the station above the vefevence ellispoid,

The local tangent coordinates of a point in space, Ny Y andd 2,0 May be
written as

l.“ - Ml‘ ('x?b _T.\). (5."-5‘4)
. TN (5.4=55)
N (N, - h,) CoOs [y cos |

\

e SIN s (5.9=506)

ys = ' (.'\" + hs) CcOos

R
N, ‘-"-..'._:’:::__\‘ CmT . (5.4-57)
N (21 = 1y s ‘.
- Sin A cos \ 0
M, = -sindcos\ -sinysin)\ cosy | (5.4-38)
COS ¢ Cos A cos < sin A siny |

Since the local tangent system, defermined only by the station pavameters, is
not a lunction of the coordinates of a piven carih-tined poin{, the pavtials of its:
componeids with vespect o the carth-fixed comyponents ave the respective
clements of the M, matrix given by

LTI
ST o M (5.4=59)
b le




5.4.6 Kevolerian-Carvtesian Transformations

5.4.6.1 Keplerian to Cartesian Coordinates

First consider the {ransformation from the orbital elements (a, e, i,, .., M) Lo
the orbital rectangular coordinate (X, ¥, s 2, >.‘ . ) o7 e The x axis is
dirccted toward perigee, the Yo axis'is in the plane "of motion advanced /2 from
the X, -axis in the direction of motion, and the 2, axis completes a right-handed
sy stcm. N

R X, [Cos E - ¢ B
Y, alll-cTsinl (5.4=60)
7 0
- '-4 e -
and
[N ] sin E
"
o le = AT cos B (5.4-01)
P (1 - ¢ cos E)
z 0
. p.a
where the ecceutric anomaly E is computed from Kepler's equation
(M=E- esin E) by the following iteration scheme.
ct (En) = E - esin E -M
D =1 - -. ‘
n S cos En > Fct(En) (5.4=62)
- -1 N
En+1 En Dn ct(En) n=0,1,2,..,
E =M~ 2sin M
o

The orbitad rectanailar coordinates are transforied to inertial Ciurtesian
position and velocily coordinates as {ollows

gl p‘gp |- "{: . (5.4=03)

z

The clements, P, of the 3 x 2 rotation matrin, P, are

Pyy = costicos w-sin{leos i sin e
P, s -cossinw=-s1nlcos i cos w
Py 7 SinNcos wy coscos i sin o
(5.4-64)
Pyy = =sinflsine i cos cus i cos w
Py, = sinid sina
p32 = Sil] l COSs .
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. 5.4.6,2 Keplerian to Cértesian Partials

Referring to equations (5.4=63a and 63b) of the previous

section, the partials of the transformation may be written

°T Ty Y Ty
=P , =P (5.4-65)
a(a,e,M) o(a,e,M) 2(a,e,M) c(a,e,M)
eT ¢p - °T 1 -
TN Ny ¥ » 3 N % N Fp
A(Q,w,1) 2(Q,0,1) P’ M, w,i) R ,w,1) t
where, if n denotes the mean motion (n =\ /i/al)
-_Xl‘ \: n'\"' T
= - ——— ToTTTiToITs
o F L - o) RS I
o Y Ny o J’_l.-;.("“\ (N4 D s
N i 7 Ty 1 (5.4=060)
o (a, ¢, 1) ; e O - vz) ¢
0 0 0
— ' =
IN L\ 2 BN Y ,
' N [it) /..(n\\‘ ! / \\\ _“/"\“x
A ) W)
. \
¥ , .2 2 )
IS B _on (:_.>1 oo e \ /“)w\ (5.4=07)
T : " et B - - 1| - C o
J (a, e, i) 2a ST - o7\ 1 Al - ey \ 7/
0 0 0
[ Loy Yo, . . . . . . —
(=S1DVCOS = CcoSACOS 1 SINL) (-SINUSiNnG —cosNeosi Cos o)
ap - ..
.‘q): (cosycosw=sinficos i sing (=CoSiIsinw=sinlcosicosa)  (5,4=68)
- 0 0 ]
7— COSLININ = SINC08 1 C0s5c)  (mCO0S .. CONG §SINLCos T sin —i
ap . . . L . ’ /
K_'J (-sinusin oy cos{lcost COs L) (-sini.cosw=costlcosisin.) (5.4-09)
[ ANV
L (s1tn1 cos ) (- stn 1 sina)
SIn L sin g sin s SIn 281N J Cos
Y ~cosilsing sin ¢ - COo5iisini cos o . (5.4-70)
-
d
COs 1 sSin W COSs | COS & -J
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Transformation
Radius
Speed
Angular Momentum Vector
Angular Momentum Magnitude
Semimajor Axis
Similatus Rectum
Eccentricity

Inclination

Eccentric Anomaly

Mean Anomaly

Period

Longitude of Ascending Node

True Anomaly

Argument of Perfocus

Periapsis Radius

Apoapsis Radius

Partials:
Ee
E . . nM
J = . .
az g
E; Fﬁ

5.4-13

-hz

sinE = ¢~

0
Q
7
m
I

M=E - e

Y

= 2r(a3

"o
|

Energy =

sinQ_= hy

sinf =Vup

cosf = «of
S in(m +f)

cos(w+f)

rp a(l'

La

/(xV)
Lc -

sinE
In)*
-uf2a
/h

p - 1)

ny
ryh

[}

e)

a(l+e)

('f.'u

5.4.6.3 Cartesian to Keplerian Transformation and Partials

22
(hx+hy)/(rv)

1/ V/73)

= e (1 - r/a)

ccsQ = hy/h

- 1/(rre),

/ure

r

Vép Tz

b

- r. h

Yz XY

hr

The Jacobian of the transformation is given by

(5.4=71)
(5.4-72)
(5.4=73)
(5.4=74)
(5.4=75)
(5.,4=76)
(5.4=77)
(5.4=78)
(5.4-79)
(5.4=80)
(5.4-81)
(5.4=82)
(5.4=83)
(5.4-84)
(5.4-85)
(5.4=36)
(5.4=87)

(5.4=88)
(5.4-89)

(5.4=90)
(5.4=91)

(5.4=92)




5.5 Vehicle Orientation Systems
5.5.1 Introductiomn

A critical part of mission analysis has to do with the atti-
tude of the spacecraft. GMAS will permit the simulation of the
nominal attitude during cruise segments by any of three reference
systems: inertial, local vertical, and orbit plane. The attitude
behavior to get into or frdm the required maneuver attitude may be
modeled by any of three sets of attitude reference systems: inertial
Euler angles, relative Euler angles, and body rates. No six-degree-
of-freedom analysis will be made by GMAS. The prime transformation
of attitude-related studies is defined by the [Iﬁj matrix which de-
fines the conversion from the inertial system to the vehicle orien-
tation frame. This section addresses the computation of the [}B]
matrix during cruise (non-maneuver) segments of the mission. The
modeling of attitude behavior during maneuvers is discussed in Sec-

tion 9.3.
5.5.2 Inertial to Cruise Attitude

The computation of the‘_IB] matrix defining the transforma-
tion from the inertial coordin;te system to the vehicle cruise
orientation coordinate system will always be accomplished in two
steps where the first rotation defines the transformation from iner-
tial coordinates to the frame having the proper z,-orieutation and
the second rotation '"'rolls" about that z,-axis to align the x4 -axis

as close as possible to the reference direction (See Figure 5-9).

[18] - [13,] [12,] (5.5-1)

where [IB] is defined by

Za =[IBJ§ | (5.5-2)

Thus

where R is the position vector in the inertial frame ani r, is the

corresponding vector in the vehicle orientation frame.

5.5-1




5.5.2.1 Primary Axis and First Rotation

The first rotation transforms the inertial z-axis into
direction of vehicle primary axis (spin-axis if applicable). This
transformation is defined by the [;B1:]matrix defined by the differ-

ent primary axis references as follows.

Inertial Reference

Under this option the user specifies the primacy axis iner-
tial right ascension aj and declination sp. The primary axis is then
held constant in this attitude throughout the desired trajectory seg-

ment. The IB} matrix is computed once per trajectory segment.

Local Vertical Reference

Under this option the primary axis is always directed along
the local radius vector. Thus the inertial right ascension ap and 8p
are determined at each computational event from the inertial position

of the vehicle R as follows:

U = R/R = (Ux, Uy, Up) (5.5-3)
sics = Ug coss = +V1-u,2  0v 5 ¢ 180 (5.5-4)
sina = Uy/c05a cosa = Uy/cosa SF a ¥ 360 (5.5-5)

Normal to Orbit quge

Under this option the primary axis is always directed normal
to the orbit plane. The inertial right ascension ap and declination

8p are computed from (5.5-4) and (5.5-5) after computing

U=(Rx¥V/Rx Y| (5.5-6)

After computing the inertial right ascension and declination the

first rotation matrix is determined from

cosa sing sina 8ind -cos$
E131] = -sina cosa 0 (5.5-7)
cosa 5ind sine cos$ sing
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5.5.2.2 Reference Direction and Second Rotation

The reference direction Ug locates the Xao axis in the
vehicle orientation system (see Figure 5-8). It therefore defines

the second transformation matrix [#32], The reference direction may
be computed according to the following options.
Inertial Reference (Star Sensor)
The UgR direction is specified by the user by detining its
constant inertial right ascension @ag and declination 8g. Then the
UR direction is defined by
Uz = (coseg cosdR, sinap cosdr, sindgr) (5.5-8)

Solar Reference (Sun Sensor)

The Up direction is computed as the vector from the earth

to the sun.
Ug = -gE/RE (5.5-9)

Local Vertical (Center of Earth Disk)

The Up direction is computed as the vector from the vehicle
to the center of the earth or equivalently as the negative of the
earth to vehicle position vectsor., Note that the user canno:‘specify
a local vertical reference for both the primary axis and the refer-

ence direction.

Uz = R/R (5.5-10)

The second rotation matrix [}Bl:’may now be computed. Write the

first rotation matrix (5.5-7) as

[181] =[xl; Y, E 21] (5.5-11)

where the unit vectors X), Y1, 2; define the principle axes following
the first rotation. The ''roll" angle p necessary to align the Xq-

direction properly is then given by

cosP | X * U

O r 360 5.5-12
& x W) 2 MNAANY ( )
|(§1 x Ug) El\

sinp =

5.5-3




®

The {.IBZ] matrix is then given by

182 = cos g

sin g
0

-sin 37
cos g
0

5.5=4

0
0
1

(5.5-8)




5.6 Time Systems
5.6.1 Introduction

The measure of time is a deceptively complex problem. Histori-
cally time measurements were based on the annual movement of planets
about the sun or the daily rotation of the earth on its axis. Because
of irregularities in these motions, these systems lead to non-uniform
definitions of time. The desire to identify a uniform standard of
time led to the use of high frequency atomic oscillations as the time
standard. The other time systems are then related to this time refer-
ence, Thus the movement of time is considered uniform and the (irregular)

motion of the earth is referenced to this uniform time standard.

Thus the standerd time reference for the GMAS will be the atomic
time system A.l1 defined below. Other time systems will be used, however,
including the ephemeris time system ET for the solar/lunar/planetary
ephemerides, the universal time coordinated system UTC for tracking
data, and universal time UT1l for computing Greenwich sideral time.
Brief descriptions of various time systems and terms used in GMAS
will be given in this section, most of which are taken directly from
Reference 5-1. Section 5.6.2 addresses the uniform time systems of
atomic and ephemeris times. Section 5.6.3 summarizes the universal
time systems that relate the orientation of the earth to the vernél
equinox. Section 5.6.4 will summarize the calendar date and Julian

date conversions,
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5.6.2 Standard Time Units

To eliminate the nonuniform time units discussed above, uniform

time standards have been adopted. The two most common systems are

"atomic time and ephemeris time.

Atomic Time A,1

A.l time is one of several types of atomic time. It is obtained
from oscillations of the US Cesium Frequency Standard:located at
Boulder, Colorado. 1In 1958, the US Naval Observatory established the
A.1 system based on an assumed frequency of 9,192,631,770 oscillations
of the isotope 133 of cesium atom per A.l second. The reference epoch

of A.l was established so that on January 1, 1958, OhOmOs UT2 the value

of A.1 was 0°0%0°%, January 1, 1958.

Ephemeris Time ET
This 1s the uniform measure of time, which is the independent

variable of the equations of motion, and the argument for the ephem-
erides of the planets, the moon, and the satellite. The unit of ET

is the ephemeris‘second, which is defined as the fraction 1/31,556,925.9747
of the tropical year for 12h ET of Jan Od, 1900. Ephemeris time is deter-
mined from the instant near the beginning of the calendar year 1900 when
the geometric mean longitude of the sun, LM’ was 279h 41m 48504 at which

instant the measure of ephemeris time was 1900 Jan Od 12h.

For most purposes, the difference between A.1 and ET may be con-
sidered a constant. The suspected discrepancy is roughly two parts in

109. The actual transformation between A.1 and ET time is given by

GET - A1) = AT (JD - 2,436,204,5) (86,400) .

1958 ~ 9,192,631,770 cesium

(5.6-1)

2 e a) 1/2 sin E

where
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- the ET - UT2 on Ol January 1958, 0"0™0° UT2 minus the
periodic term in Equation (5.6-1) evaluated at this

T19s8

same epoch,
JD - the Julian date.
2,436,204.5 - the Julian date on 01 January 1958, 0"0™0°.
At ‘ esium = 9°192,631,770 cycles of

cesium per ephemeris second.

h

cesium - the correction to fc

,A.- the gravitational §§nstgnt og the sun,
1.327, 154,45 x 107" km”/sec”.

a - the semimajor axis of the heliocentric orbit of the
earth-moon barycenter, 149,599,000 km.

e - the eccentricity of the heliocentric orbit of the
earth-moon barycenter .01672.

c - t?e speed of light at an infinite distance from the
sun, 299,792.5 km/sec,

E - the eccentric anomaly of the heliocentric orbit of

the earth-moon barycenter.

The first term of Equation (5.6-1) arises since A.l was set equal to
UT2 at the beginning of 1958. The second term accounts for the dif-
ference between the lengths of ET and A,l seconds (if Afcesium is
nonzero). The periodic term arises from general relativity. It
accounts for the fact that A,1, UTC, and ST time is a measure of
proper time observed on earth, and that ET is a measure of coordinate
time in the heliocentric (strictly barycentric) space-time frame of
reference. The conéribution of the last two terms in Equation (5.6-1)
is negligible for the range of applications currently contemplated for
the GTIDS program. Hence, the transformation tetween ET and A.l is

accomplished using the approximate formula,

5.6.2 Universal Time Systems

Universal time systems are used to determine the orientation

of the earth relative to the vernal equinox at a specific instant,
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" In essence universal time is a measure of the angle between the Greenwich j

meridian and the sun at some instant with 12h UT corresponding to the

sun directly overhead. Because the rotation of the earth is irregular,

the relations between uniform time and universal time are somewhat com-
plicated and generally must be determined after the fact by observation.
This irregularity is quite small and can generally be ignored in most
mission enalysis problems. However, in precise satellite tracking (where
minor anomalies in the orbit are used to determine the parameters of the
orbit, dynamic model, or measurement model) these rotational irregularities

must be considered.

The differences between the universal time systems are essentially
related to the manner in which the universal time is computed. The pri-
mary universal time systems are the universal time coordinated system
" (UTC) for the tracking data and the universal time UT1 for computing
exact Greenwich sideral time. In practice, GMAS will determine the
actual corrections from the time difference data A,1-UTC and A,.1-UTl

. supplig& by the U.S. Naval Observatory. These data are supplied in the

l' form

T T
a.1l - UTC)i =a, + 8 o + 84 (5.6-3)

(A.1 - UTL), =&, +a, +a T

where

AQI-UTC
A.1-UT1
" T - the number of days from the beginning of the time

the difference between A.1 and UTC time, in seconds.

the difference between A,l1 and UTl time, in seconds.

" " span covered by the polynomia:, T =1, 2, « . .

i - the index of the time span.

The coefficients: a,, are given in Table 5.6-1, next to Modified Julian

1)
. dates (mod 2,430,000) defining the time interval for which the coeffi-
' clents are applicable. The table covers the time span from
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January 1, 1958, end is updated once every month asicﬁrrent data from
the U.S. Naval Observatory becomes available. The last row of coeffi-
cients in the table is used to obtain extrapolated values of the time-
differences for a short time in the future, The table is used by

finding the value of i such that the given date, MJD‘, is in the range

TN

MJD MID, < MJD

i j i+1
The argument of interpolation, T, is then computed from,

T = MJDJ - MJD, + 1 (5.6-5)

Having given the computational transformations, we now proceed to give

the rather lengthy definitions of the universal time systems.

Standard Universal Time, UT

This is the measure of time that is the theoretical basis for
all civil time keeping. UT is related to the rotation of the earth
on its axis. Compared to ephemeris time, which is uniform time, UT
does not take into account the irregularities of the earth's rate of

rotation,

" The quantity UT is defined as 12 hours plus the Greenwich Hour
Angle (GHA) of a point (representing a fictitious mean sun) on the mean
equator of epoch whose right ascension measured from the mean equinox

of epoch is

R, = 18" 38™ 455836 + 8,640, 1845542 T, *+ $0929 T2

(5.6-6)
u

where T is defined as the number of Julian centuries elapsed from 12h

UT1 January 0, 1900 (JD = 2415020,0) to the UT1 time of epoch.

The Greenwich hour angle of this point, denoted by a in
Figure 5.6-1 is

C!s = CxGM - RM (5.6-7)

where (xGM is the Greenwich mean sideral time; hence,

5.6-6
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UT - 12" 4 a, - R,. . (5.6-8)

NORTH CELESTIAL POLE
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OF DATE >u ~

FICTICIOUS MEAN SUN

Figure 5.6-1. Greenwich Hour Angle

The practical determination of UT is obtained from meridian transits
of stars by the U.,S, Naval Observatory. At the instant of observation,
the right ascension of the observing station is equal to the observed
star, relative to the true equator and equinox of date. Subtracting
the cast longitude of the observing station gives the true Greenwich
sidereal time, C%g , at the instant of observation, c(g is also the
Greenwich Hour Angle of the true equinox of date., Subtracting the
nutation in right ascension gives the Greenvich Mean Sidereal Time,

c*‘GM or GMST., UT is then determined from the above equation (5.6-8).

Uncorrected Universal Time, UTO

This measure of time is obtained from UT by assuming a nominal
value of the longitude of each observing station. The resulting UT
is labeled UTO, Actuasl determination of UTO is done by an instrument
located at an observatory whose adopted conventional longitude is X‘A'
When the longitude - >‘A is added to the observed _ocal hour angle of
the point Su, (See Figure 5.6-1), whose right ascension measured from

the mean equator and equinox of date is Ru, then UTO is obtained (See
Figure 5.6-2),

UT0-12h-)\A+LHAofSu. (5.6-9)
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" GREENWICH

Figure 5.6-2. Universal Time References

Universal Time, UT1

This measure of time is defined in terms of UTO by applying an
appropriate correction in longitude due to the motion of the pole. UT1
reflects the actual orientation of the earth with respect to the vernal
equinox at that instant. UT1 will be the same for all observatories.
In contrast, UTO time, as determined by different observatories using

their adopted longitude in calculations, results in a different value
of UTO for each observatory.

Then

UT1l = UTO - (5.6-10)
AN\ = tan éA EXp sin >‘A + Yp cos A‘] : (5.6-11)

where )\A and fA are the adopted longitude &#nd latitude and Xp, Yp
represent the polar motion (See Section 5.3.5). UTL time is caused by
GTDS to compute the 8om 88 8iven in Equation (5.3-14),

Universal Time, UT2

If the extrapolated value of UT1l time is corrected for periodic
seasonal variations, SV, in the earth's speed of rotation, the result-
ing time is UT2. UT2 does not represent the actual orientation of the
earth with respect to the vernal equinox. UTl should always be used
when the actual orientation of the earth is required. UT2 is often

referred to as GMT, Greenwich Mean Time, and ZULU time. The equations
for UT2 are




UT2 = UT1 + SV (5.6-12)
where '

] .
SV = 022 sin 2 t - T017 cos 2 t - 5007 sin & t + 5006 cos 4 t

(506-13)
or ¢

S .
SV = (022 sin 2 t - 7012 cos 2 t - 2006 sin 4 t + 5007 cos 4 ¢

(5.6-14)

Equation (5.6-13) was used prior to 1962 and Equation (5.6-14)
has been in use since 1962, The quantity t equals the fraction of the
tropical yeaf elapsed from the beginninngf the Besselian year for which
the calculation is made. (One tropical year = 365.2422 days.) Since
seasonal variations can be known precisely only after their occurrence,
UT2 itself is rarely used. The Bureau International de 1'Heure also

issues corrections for and SV.
Universal Time Coordinated, UTC

This is the standard time scale to which tracking stations are
synchronized. UTC time is derived from atomic time, A.l, in & manmer

which makes it almost synchronous with Earth-rotation-derived time.,

" Up to January 1, 1972, the UTC time scale operated at a frequency
offset from the atomic time scale. The value of cthe offset was period-
ically changed by international agreement so that the UTIC scale would

correspond more closely to time derived from the rotation of the Earth,

On January 1, 1972, a new improved UTC system, adopted by the
International Radio Consultative Comhittee (CCIR), was internationally
implemented by the time-keeping laboratories and time-broadcast stations
(References 10 and 11).

The new UTC system eliminates the frequency offset from atomic
time, thus making the UTC second constant and equal in duration to the
A.1 second. The new UTC time scale is now kept in synchronism with the
rotation of the earth to within + 0.7 second by step-time adjustments

of exactly one second, when needed,




5.7 References

5-1,

5-2.

5=4,

W. E. Wagner and C. E. V.lez, '"Goddard Trajectory

Determination Subsystem Mathematical Specifications",
March, 1972,

TRW Systems Group, "Houston Operations Predictor Esti-
mator (HOPE) Engineering Manual', TRW 70-FMT-7924.
June 1970,

R. 1. Haverkos, D. L. Beery and R. W. Herder, "Orbit
Adjust Maneuver Program (OAMP) User's Information',
CSC 3000-04800-05T*, March 1974.

A. Rochkind, "Synchronous Metcorological Satellite
(SMS) Mancuver Control Program (SMSMAN) Task Speci=-
fication", CSC 3101-00800-02TN. July 1973.

Peabody, Scott, and Orozeo, "User's Description of
JPL Ephemeric Tapes," JPL 32-580, 1964.

5.7-1

. |




6. State and State Transition Matrix Propagation

6.1 Introduction

This chapter will be devoted to the description and definition of
the dynamical models of spacecraft accelerations, the mathematical formu-
lation describing those models and the numerical or analytical techniques
used for solving those equations. GMAS will include the capability for

low, medium and high precision propagation but will access GIDS for the

latter capability.

The GMAS will be capable of simulating the motion of one or two ve-
hicles moving under some or all of the accelerations due to a non-spherical
central body, n-point masses, atmospheric drag, solar radiation pressure,
attitude control system corrections and finite thrust. The central body
asphericity will be modeled using the standard expansion in Legendre
polynomials. Drag calculations will include the vehicle characteristics
as modeled by effective cross-sectional area and drag coetfficient and the
atmosphere as defined by a fairly accurate model such as the modified
Harris-Priester., Solar radiation pressure will include the vehicle char-
acteristics including luminosity, distance, and shadowing. The attitude
control system effects and finite thrust models will include polynomial

expansions for the acceleraticns.

GMAS will include the capability to propagate the veaicle trajecto-
ries at three levels of precision. The low level vorecision formulation
will be two-body motion and the Brouwer-Lyddane formulation. The medium
precision formulation will include both analytic and numerical averaging
techniques. To take advantage of existing capability, GMAS will be de-

signed to access the high precision propagation techniques available in
the GTDS.

All the propagators developed for GMAS will be built with complete
modularity to allow any combination of the models included, the mathe-~

matical formulation, and the numerical s:heme desired by :he user. Pre-

vious studies have shown this can be done very efficiently.
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6.2 Dynamical Models

The state of a spacecraft is a function of the many accelerations
acting upon it. Scme of these accelerations are due tc the physical
characteristics of the solar system, while others are generated by
spacecraft systems. The dynamics of the situation are expressed by the
equations of motion which provide the relationship between the space-
craft state at any instant and the state at the initial epoch., This
section identifies the various sources of acceleration and gives the
appropriate mathematical representation. The accelerations which are

considered include:

1) the gravitational acceleration due to n-point masses,

2) the acceleration due to the central body gravity harmonics,
3) the acceleration due to atmospheric drag,

4) the acceleration due to solar radiation pressure,

5) the acceleration due to thrust,
6.2.1 N-Body Gravity Contribution

The equation of motion in an inertial frame of reference for a
spacecraft of negligible mass under the influence of n-point masses is
given by the summation of accelerations due to the point masses

. n -

R = -3 ”k Rep (6.2-1)

: k=1 : .
Rep

e !
where RI is the spacecraft position vector in the 1nertial frame, ;lk

the product of the universal gravitational constant and the mass of the
kth body, and Rk is the vector from the kth body to the spacecraft (Rk
denotes the magnltude of Rk ).

It is normally more convenient to reference the mction of the space-
craft to one of the massive bodies. The equation of motion referenced to

this "central” body is in an accelerated frame of reference and is given
hy:

in B R
R NN A e
) e | IR lngs
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where i# is the vector from the central body to the kth body and R is
from the central body to the spacecraft.

In one case of practical application it is sometimes necessary to
add an additional term to equation 6.2-2. This is the case of an orbit
referenced to the Earth's moon where the indirect effect of the nonspher-

icity of the Earth on the lunar ephemeris is large enough to have an
effect.

6.2.2 Gravitational Harmonics

The determination of the acceleration due to the nonsphericity of
the central body is a classical problem and is well treated in the litera-

ture. A summary of the required mathematical formulae will be given

below.

The central btody gravity field is represented by a potential func-
tion which is an infinite sum of spherical harmonics. The sum is nor-
mally truncated ac some appropriate level. The potential function is
given in equation (6-3).

Y
bl n

a
y(r,¢.A) - A 1 # % Cg -° P: (siny)
r
l;'l

(6.2=3)

: /
:ll’ m : Jmn m }
B E E - PP (sing) ST sinm\ o CF cosmn
" - -

where
i ~ the gravitational parameter of the central body
a .-\- the radius of the body (usually taken as the equatorial radius)
' P? ~ the associated Legéndre function
sr,ch o~ harmonic coefficients.

The term n = 1 is usually not present when the origin of the coordinate

system is placed at the center of mass.

The accelerations due to the nonspherical portion of this potential
are obtained in the body-fixed, true of date coordinate system shown in

Figure 6.2-1, where the coordinate directions are defined as follows:

6.2-2




X axis lies along the intersection of the central body's equatorial plane
and the plane of the prime merdian

z  axis lies alony the uxis to the adopted North Pole

y, axis complcetes a right-handed coordinate system.

The acceleration due to nonsplericity in this coordinate system may be obtained
as a vector r with components x,, y,, and %, where

1 v I o} » 3 A o ’ s
r, - \iiﬁ4i‘_£*i_a_’; (6.2-4)
) dr ory Ap Or A\ 0T
b

Figure 6.2-1., Body Fixed System

The partial derivatives of the nonspherical portion of the potential with respect

to r, », and A are given by .
3 N a \® n
AP (L)Z (J:) (n 1)}_' (C™ cos mA + S7 sin mAYP® (sin )
Jr T r T
n.-2 1"—=—6l (6.2'5)
a\/‘ b 3 np " C : . + R .
-.é;f - Z: - Z(C:vosm)\,S:"'s:nm\)[P': (sind)-mtany P‘l‘:(san'\}
n=2 ma=0
3 N a \" n
?a_\i' = (‘_;) E <-:"> Z m(ST cos mA - C sinm\) PP (sinq).
n=2 mz0
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The Legendre functions and the terms cos mA, sin mA, and m tan¢ are
computed via recursion formulae:

Pi(siny) = {(2n - D) sin, P2 (sing) - (n=1) P? , (siny)l/n (6.2-6)

P™ (siny) = P?"..z (s1ny)+1(2n =-1) cos ¢>P:"‘:} (siny) mfO0, men (6.2-7)
(6.2-8)
Pr(siny) = (2n-1)cos P::} (sin¢) m#0. m-n
where
Pg (siny) = 1, P? (sin @) = sin O, P:(sing‘)zcosm (6.2=9)
sinmd = 2cosAsin(m- DN =sin (m- 2)\
(6.2-10)
cos A = 2cos A cos (n- 1)\ - cos (m>2)A
7
m tan !(m - D tan -',"-)] t tan . (6.2 11)

The partial derivatives of r, , and A with respect to Xy Yo aud 2, are computed
from the expressions

P (6.2-12)
r

=T N
in . | 1 f_zb'b . af\.:l (0.2-13)

d A)
)N - 1 x yb -y (xb (0.2-14)
2 2 b 3 b 3
vy, (X3, + v, RAEY "\
where
ax ay dz
—, ", and —° (6.2-15)
3rb Brb' arb

are the row vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1), respectively.
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Substituting equations (6.2-12) through (6.2-14) intc (6.2-4) yields

. 1 2y z P:)
rzvx;‘:+yg (Xf, *ytz,)
1 Q z\) 34; 1 ij;
Yo 2 |- 3~ - e + e .2-16
’ roor 2 2 ay Yo 2 2 A\ b (e )
rAuXg Yyl vt Yy

2 2
1D x oyl
) (_‘_x»),b,__z____' pl]

r Ji 2 ay

The numerical computations related to spacecraft orbits are normally
made in an inertial frame of reference (e.g. mean equator and equinox of
1950.05 so that the appropriate rotation of the acceleration vector from
the body-fixed, true of date system must be made. This is discussed in

Chapter 5.

8 The formulation given in equations (6.2-3) through (6.2<16) is taken
from reference 6.1 and is necessary when the spacecraft orbit is being
integrated in a Cartesian formulation; on the other hand, if a variation
of parameters (VOP) formulation is being used, the planetary equations
which express the rate of change of the Keplerian elements are given in
terms of partials of the potential with respect to the elements. The

potential must thus be expressed in terms of the elements,

In terms of Kepler elements, the equations of motion are:

da _ 2 _3v ,

dt na M

de 1-e? v 1-e)t/2 3y

= = — — --(_ — — ¥, (6-16a)  (6.2-17)
dt - na‘e oM na‘e dw

i 1/2
‘IP dw | _ cos i W, (-e) ' 3¢

dt naz(l-ez)‘[:sin i ai nale de
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di cos i v _ 1 v,
dt na’(l-e’)‘lzsin i dw naz(l-e2)§/zsin i 3Q
e 1 W, (6.2-18)
dt na‘(l-e)‘/z sin i 3i

éﬁu_hﬁtiﬁ_l_ﬂ+

dt nale 3e na 3a

where ¢ is the disturbing (non two-body) part of the potential. The ex-
pansion of the disturbing potentials (\l/H and "bTB for gravitational har-
monics and third body perturbations respectively) in terms of the Kepler
elements of the spacecraft, the angular position of the Earth and the

Kepler elements of the Sun and Moon are given by Kaula (reference 6.2)

as
@ L
W= 2o 2 vy
=2 n=0
i +®
pa - ’ o
w(m - Lf‘ Z "U\P(i) Z GLFQ(C) SU“PQ (6.2-19)
p=o0 =
[ cos { - m even ,
S(,mpq= [(Jz-zp)w+((,-2p+q)}{*m((:1-e)
Lain_’(» m odd
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" where

earth gravitational constant

=3
"

a = earth equatorial'radius

= radial distance to vehicle
« semi-major axis

= eccentricity

= inclination’

mean inomaly

= argument of perigee

= rignt ascension of ascending node

right ascension of Grecnwich

'I@,-:)E 52 e o0 B IO
L]

0‘ (e) and e (i) are functions arisine from the Harmonic analycis

WP
ol he Sotential field and transforaation to functions of WKepler olcments.
Botn G (e) and F p(i) are available as computer subrout ines.
. The tnlrd body disturbing function is given by
. dt* 2% \-2—\ 2 -n)! .
- I TR ‘ K : F i .
m=0
" } | o
A 3 E
7 anh(l ) . anq(e)‘ (6.2-20)
h=0 q=
+o
—ﬁ * . hd }
‘> Cohj (e) cos [2-2p)w+ (2- 2 +q) M = (2 =2h)w
s
. . * D
w (2= 2n 430 +wa-0))
. where a "star'refers to the Kepler element of the disturbing tocy.
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Km =2 *m#o

anq(e) is available as part of the computer subroutine which calcu-

lates G[pq(e)'

6.2.3 Atmospheric Drag

One of the more complicated forces acting on the satellite is
aerodynamic drag. The complications arise because of the presence in
the mathematical model of the atmospheric density, a parameter whose
properties and characteristics are not well known. The mndel for this
force is only as good as the model for the atmospheric density and if
consideration is given to the hOurly, daily, monthly, and even yearly
variations of aEmOSpheric constituents, then the complexity begins to

become more evident.

The braking effect of this force is characterized by a deceleration
of the satellite which, in turm, tends to secularly decrease the energy

and lower the altitude.

The direction of the force is opposite to the direction of motion
and is dependent upon the shape, size, orientation and velocity of the
satellite as well as the density of the atmosphere. The atmosphere is
rotating; consequently, the velocity referred to above is not the iner-
tial velocity of the satellite but rather the velocity relative to the
rotating atmosphere., The consequence of using a rotating atmosphere is

that the force is no longer in the plane of undisturbed mption.

The force is defined in terms of these factors to be

where
A ~ the effective cross-sectional arca
Cp ~ the aerodynamic drag coefficient

P ™ the density of the atmosphere

Ve ™ the velocity vector of the satellite relative to the altmosphere,

6.2-8




In the 1950.0 coordinate system, the relative velocity vector is given

by

Vuu =R- (@xR) (6.2-22)

where
w ~ the angular rotation vector of the earth expressed in 1950.0 coordinates
R, R ™ the earth-centered 1950.0 position and velocity vectors of the satellite.

The required acceleration is given by

-C A B .
! 27"
2m, P Vaer Vi (6.2<23)

D

where*mo is the mass of the spacecraft. Equations (6.2-21) through (6.2-23)

are taken from reference 6.1.

6.2.4 Solar Radiation Pressure

The force due to solar radiation pressure on a wehicle's surface
is proportional to the effective area A of the surface normal to the in-
cident radia;ion. to the surface reflectivity, n, to the luminosity, Ls’
of the Sun, and inversely preoportional to the square of the distance RVS

from the Sun, and to the speed of light, c.

The magnitude of the force due to direct solar radiation pressure

on an area A is therefore given by

) LsyA
4nRs'c (6.2-24)
where vy=14+7 (e.g. ¥=195 for aluminum) (6.2-25)

The magnitude of the acceleration on a spacecrart of mass, m s and

area, A, due to direct solar radiation pressure at one astronomical unit
from the Sun is

F

—= (6.2-26)

nlwn
3];

0 0
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where S denotes the mean solar flux at one astronomical unit. The quan-
tities ¥, A and m  are grouped together since they are spacecraft proper-
ties and can be determined prior to flight. The magnicﬁde of the accel-
eration on a spacecraft due to direct solar radiation at the actual dis-
tance R.vs from the Sun is given by

F_ sk, A

— D e em—

mo C R2 mo

vs

(6.2-27)

where RSun designates ore astronomical unit, i.e., the semimajor axis of

the Earth's orbit.

All of the above factors except Rvs are constant for a given space-
craft and mission. For computational convenience, PS replaces S/c. P
is defined as the force on a perfectly absorbing surface (7= 0) due to

solar radiation pressure at one astronomical unit.

The acceleration due to direct solar radiation is away from the Sun;

that is, in the direction of

R -=R%-% (6.2-28)
vs .8

where

R ~ the position vector of the vehizle in the irertial mean
of 1950.0 coordinate systen

R~ the position vector of the Sun in the inertial mean of
1950.0 coordinate system.

The model for the acceleration §SR due to direct solar radiation is

Rgq = vP, R2_ 2A Do (6.2-29)

- ———
sun

Il\o RJ
vs

where

0 if the satellite is in shadow (umbra)
v - eclipse factor such that = 1 if the satellite is in sunlight and
0<¥<1 if the satellite is in penumbra.

Equations (6.2-24) through (6.2-29) are taken from reference 6.1.
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6.2.5 Finite Thrust

The model used to describe the spacecraft acceleration during
propulsive maneuvers is an empirical representation based on the re-
duction of data taken during the motor burn testing procedures. It is

represented in an inertial true of date systems as

Fpoatu(t = T) -u(t - TH) U, (6.2-30)
where - ‘
a ~ the magnitude of the thrust acceleration
U, ~ the direction of the thrust acceleration
T, ~ the cffective initiation time of the motor burn (ET)
T, ~ the eficctive termination time of the motor burn (ET)
and
e ,
u(t-7) 0t . (6.2=31)
The motor's effective burn time is
. 5.32
Tb:""‘To' (°.~3)
The propulsive acceleration is modeled as follows
n;;na+al'r+:;277¢n373+né -4 (6.2-33)
where T=t-T (6.2=34)

Equation (6.2+33) characterizes the thrust acceleration as a fourth degree
polynomial in 7, the time from effective thrust initiation, to represent

the effective thrust to mass ratio as a function of time.

The unit vector UT is assumed to be directed along the spacecraft's

thrust axis direction. The true epoch components of the thrust axis are

r-.cos g COS 8:
U.=]|sina_ cos$ :
T T T (6.2-35)
wherc L?in ST _
ar~ the right ascension of the spacecraft's thrust axis relative to the

true cquinox and cquator of epoch

8¢ ~ the declination ol the spacecraft!s thrust axis relative to the true
equinox and cquator of epoch.
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I o S
' The thrust axis orientation is also represented by fourth-degree poly-
nomials in T
«Q TS P T 4 Q 72J,a 734.;1‘ 2
r 0 1 2 3 4 (6.2-36)
. < \ 2 : 3 .4
‘T IR PLANE R FE AR R (6.2=37)

The thrust acceleration is expressed in the true earth equator and equi-
nox of epoch coordinate system (via the unit vector E&). This is then
rotated to the inertial mean equinox and equator of 1950.0. Equations

(6.2=30) through (t.2=37) are taken from reference 6-1.
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6.3 Low Precision Propagation

Many of the functions of GMAS such as mission assessment and profil:
generation, maneuver analysis and error analysis will require the availa-
bility of extremely fast propagation methods. A consequence of the fast
computation time will be low precision, since analytic techniques cannot
include a complicated force model. Two basic analytic methods will be
sufficient for most applications. The salient equations for a very ef-
ficient formulation of basic two body motion by Goodyéar (Reference 6.3)
and the Brouwer-Lyddane theory (Reference 6.4) which includes effects

of the first few zonal harmonics will be given below.

6.3.1 Two Body Motion

The Goodyear formulation of the two body problem uses a change of
variables that permits a very concise set of equations to be used that
are the same whether the motion is hyperbolic, paraboiic or elliptic, A
consequence of this i1s the introduction of several new transcendental
functions replacing the standard trigonometric and hyperbolic functions.
With this formulation, the propagation oZ a two body orbit is accom-
plished very quickly.

The change of variables is made by defining
v = 1/r (6.3-1)

which leads to the relationship of ¥ to the eccentric (E) and hyperbolic

(F) anomalies in standard two body formulations as
E-Eo F-Fgo

.3=2
“Vils Vil (6:3-0

The equations necessary for propagating a two body orbit as taken

from reference 6,3 are given below, where ;; and ;; are the position and
velocity at time t, and r and T are the position and velocity at time t
and the gravitational parameter is u, First

0 0 0 o

r o= (6.3-3)
0 L l'o ro .
@ =TT~ 2 /ro
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are determined. Then the parameter ¥ and its transcendental functions

'0 = 1+ a &2/21 + az ¢4/4! + a3 4»6/6! +....

5, = ¥ +a 0231 + o2 251+ o T TR

(6.3-4)
z -
s, = /2! + a ¢4/4!+ az 4«6/6! + a3 ¢818!+
8, = ¢3l3l+ a ¢5,5l+ al ¢7/7l+ al ¢9/9!+
are obtained by solving the equation
6.3-5
tetotrys b 0 e+ us, ( )
for » . Then
. r = roso + 00 s +u s, (6.3-6)
and
f=21< pus /r g2t -t)- pas
(]
fa-ysl/(rro) g-l-paz/r
give the final solution for the coordinates.
- - - [ 4
= f ro+ g x, (6.3-8)

The state transition matrices are given in terms of the
initial and final coordinates and the initial and final accelerations.

The auxillary parameter U is defined in terms of two additional trans-

cendental functions Sa and S5 where

U = s,(t-t) +/u<1“s4-3s5) (6.3-9)

where

s, * ¢‘/4!+ a¢6/6!+ az 0018! + a3 &10/1011».... (6.3-10C)

The state transition matrices are given on the following page.
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Oylaxo
azlaxo

ax/ Bio
ay/ aio
leaio

ax/ ax,
dy/ 3x0
8z/ on

8xlaxo
8yl3x0
a.' -
z13x0

8:/810
Bylayo
9z/ 3{0

8x/8'yo

bylaio |

82/8?0

a:‘c/ayo
3§/3v0

8i/0y

Yy

Ne e Ms

ax/ aio

8y/ay0

8 - -
2/3{0

-

3x/ 3z f 00 x
8y/azo =10 £ O] + Uy [xo ¥o zo]
9z/dz 0 0 f z
. (6.3-12)
. al fs, t g ] ]
- -fs (% Yo %o
r 2
+ |y Y 0 % 0 z
. o Yo %o
z (£-1) s
- (f-1)s
L Y 2
8x/ai0 g 0 0] x
z 1=1]0 0! -ulv * v oz -
ay/azo g }: Eco Yo zo]
az/ 9z 0 0 g z
(6.3-13)
x x|r-t s, -\(g—l)sz X Yo %
oV s, g *0o Yo %o
. 2 2
z z] A
ailazo f 0 0 % ,
80 = < oo o -’ P
y/ 9z 0 f ? + Uly [xo Yo zq]
82/9z 0 0 f z
(6.3-14)
HE ] fs. + (g.-l)/r-
-f1 0 1 1 1 Yo 2
(”+r2+r2 ) - . [‘o 0 o]
. 0 0 Xy Yo 2o
fsl+'(f-l)/r0 f.sz
T, i
a;:/aéo g 0 0 X
ay/az0 0 g 0] —~U |¥ [xo Yo zo:]
az/ io 0 0 g z '
A fo 4 @0 @0 s (6.3-15)
x - -
’.‘ r r J[xo Yo zo}
+ iy y . X y,. z :
. fs 1) s o Yo %
T = 2 (8-1) 2
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‘ The partials with respect to the gravitational constant
are given by

5 x/ 8| x %) [ -errg (6.3-16)
By/ u B R A lJ/r:O - 33J
az/ .y z oz
* ’ . o
ax/ du X x x -sl/(r ro)
ai.r/ o = |y y y szlro
_9‘/ O S Ulry - 85 (6.3-17)
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6.3.2 Brouwer-Lyddane

The Brouwer theory for the motion of a satellite moving around a
central body including the effect of the first five zonal harmonics
develops the solution in canonical variables using the von Zeipel method.
It is applicable to elliptical drag-free orbits but has singularities for
zero eccentricity and inclination and the critical inclination of 63° 26',
Lyddane improved upon the Brouwer theory by obtaining improved algorithms
applicable for zero eccentricity and inclination. This section presents

the equations required for the Brouwer-Lyddane formulation.

In these formulas, the osculating orbit is divided into secular

terms and long and short period periodic terms. Delaunay variable notation

is used, i.e.,

1" - M" i
g" = w" (6.3=9)
h" = Q"

The double prime will be used on a variable to indicate secular or mean
motion, single pfine will indicate secular plus long period terms, and
unprimed variables will include all effects and are used for the osculat-
ing elements. The semi-major axis, eccentricity and inclination, will be

represented by a, e, and 1, respectively. The radius of the central body

is given by Re'

Propagating only secular terms to time t yields

0: - Q,

e = 3:

A= Ag .
(6.3-10)

L= n,oat + Lat + 2 0 L<arw

g" = § &t + g, 0s g <arw

A=

At + 4 04 4w
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where

3::

4.\ 'Y n.{Y;[g

+ (105 +144n+25n") e*)]

+ (385 +360n +451") e*)]-l-

+ (385 - 18a7Y) 9‘] }

5 ¢ A
+2 v, o(5-3n )(3-—79‘)

and the abbreviations are

Note that the secular terms depend only on the second and fourth harmonics,

e VS
o

*1_: JzzRe.
4y == T R
4
4y ___SJgRe
) 5
*q ==~ J;R¢

n=yi-e
¥,= %23;
7,5%57
v,= Xy
Ys=%_f—,

6.3-6

s L’
+E‘£‘

AR {‘(,f [%(39‘— |)+§35_ X, zér\’+ len-15+(30-%n-90n") 8

no{‘r; [_2_(59:_| )+ % T.; (zs nt+z+n-3s +(qo-lazv1-12¢.n")e"

[7.1 -9+ (1zen=270) &'

T;((Cm'-s- 1ZNn=-5)0 - ( 35+36n+5 n‘)e’>-3e]

e*(3-30 9+ 35 e")}

(6.3-11)
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The mean value of the eccentric anomaly, E", is obtained

iteratively from Kepler's equation

E - eu S'\r\ E“ - ’e'

(6.3=13)

The mean true anomaly, ', mean radial distance, r", and the differcntial of

the mean semimajor axis with respect to the mean radial distance, da"/dr", are

-

f"= fq:\‘ [W—e"" sinE"‘]b

cos E"~- "

t" = a"(1-e" cosE”)

da’ :

dr® - (i-e"cosE")

(6.314)

(6.3-15)

(6.3-16)

Since the periodic terms are somewhat lengthy, the following
abbreviations are intrcduced to shorten the computations.

ng 4
A: = '(\-:fxe'l') . A = (561‘» 1)6‘,‘\.
A~ .g.x; W (i-ne- 4oe‘A'.) A= e"ze‘A:l
Ai= 30%+ Bo*A, As = 6" Al
’(' 2 '
A "%‘:‘"{Y\ (1= A Ag = At:
7: w 4 ., . 0
Ag® 'i.f(aeiﬁ) Ag = eAs"‘“
Ayn -.T";(t-ﬂi) A i
As= As(1-34,) Aq= (1+6) sind”
L1 .
Ag" "'4'7‘? AIO- e o
Avm Acn®sini” Ay ~ €A
! w2 2 ’ (Y
A.l % e. (l“se“'s G‘A\)- Alz‘ Azo faﬂ(‘%)
Aqe " sin i Au= A,
Ik 3
AIO- 2+ 8 A“- A"+ 2
Ay 33.: 2 - | A= 16 Agt 40A, +3
At A A= § Ay (s 200 Agr 80

6.3-7

(6.3-17)

o



’ |

and

B,= YU(A-A2) - [ {2 (A= 400A,=40 Ay =1\ Ay) ‘_
o * "5/\1\(“*?00’;\;5* N ] '
+ [;";( 80AL=BAG-3A+ + & Ay A-u] %,(4:-',’
B.= Acho (24 M- &™)t B As A= 2 A A
+ A“ tan (2) [22 Ag+Ac) + 5 AgA, [2 €7+ 20]
5 53 AshroAgs sini” (1-0)
B,* 3-_;’1 ?‘ e sini'(6- DA, [BOA“,+ +32A\s]
-3 S {Ata @+ e s 0mnd ] s’}
B = M (A As)
| Bs= 1 [f’; A (‘!a"2++)+/\7]
B = 3-’;- y( Ag Sin "
B,s WALAL [§Y.(1-1568Y- & \,,(l 70 )]
B 25 AW (1= qe—z4eA)+n Ae

B~ s‘sﬂl As

s VY !
B‘o— 51\‘\* .L\) zr’ f‘\-“Azs -,A'Uo 1.]
B'. AZ\[{,"‘ f. -+ A‘, -y A A‘LP Siy\zl\\

.20 s
[( 8o f, + 32 A|5+ b)(bm 7‘ e"sin L A+ 3‘2‘_ ,AaA?o]

B‘3= ¢ (A~ A2)

5 2. .n
B.= --‘-’--A-— Y Sink + Ng

t

B‘g 384— Pe nsina

The following tormulas give the osculating elemen‘s at time t.

Semimajor Axis

" [ ot " - al
o= a"{l +¥, [0 f‘—; (e'v\ + -\%—;—\ ycosF(3+3€cosf+e Costf'“))

w3 " -
¥ 30-8")(5%) cos(.. 5" 1%)]}

(6.3-18)

(6.3-19)




Eccentricity

& = Bjcos 29"+ B, sin §'-"Bgsin3g” (6.3-20)

o 2
§e = §e —- I,}_- {X;(l- 6‘)[3 cos (29" £") + cos(3£"+ 23")]
N - 3Yz'\!{b(l—9’) 605(23"+25')(3e'co:sf§!+ 3cosf+e o5 €') (6.3-21)

- 4 2 ¥ e* . )
;-n‘,(39 1) [e n- f;ﬁ +3€ cosF+3 cosf’-» e"zcoss-}"]}

-9’8}. = B, Sin 2.3'-.- By cos 3". + By cos 33"

3¢ . .2 [ ; ]
-im rz{z(se‘-n)[n‘(;%H &+ ] sinf (6.3-22) ‘{

ar*
2 "
+ 3(\-9‘)[(_71’-(3_?{') o 3%- - |) sin(22-+ 5.)
2 d ; 2 o . " ")
+ (WG f2l+ §) sin(aseagh]}
e= er"+ sey + (e’se)t (6.323)

Inclination
§i= +0Y, sini"[e'cs (35 29") -

+3 (e'cos(zg'+ £") + cos (2F" 2 3"))] (6’.3-.24)
- .élz{ (8 cos 23"+ B4 sng"- B sin 33"]
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‘ sm(—-) $h = W} { B\, Sn 23" + B, cos 3'+ B, cos 39’
~ 1010 sini"[6 (e sinf- 2% £¥) |
- s(sin (2¢"+2£") + €"sin (23"+§")). (6.3-25)
- e"sin(3f'+29") ] }

- N o ¥ X l/
A=2 Sin‘{[sfn(%) Sk]z+ [—;_S;. cos () + sin (§) ]z} * (6.3=26)

~

Mean Anomaly, 2 , _Arpument of Perigee, &, :u‘;d Right Ascension of Ascendiny Node, %,

l: 31&1 - (11§'+ ‘fz') + B, Sin 23"4- Bzcos g'-!— B; cos 33’ (6.3-27)
‘ ’ “al t ’ .
. Leg+f = (2+q )+ {-i—(;:—}-‘ e"Y, [3(:-9‘)(5&1(5%23')

x(—+(dr,)n+ I ) +s-n(z§+§)<\ (d,.u n'- da’ ))

+2sin$ (39—1)(l+(:’—g,) n+ 2—%)]} (6.3-28)
+3y [(se‘-ze-:)(e" sinf + ;'—2.")]
i +(3+ 26-56‘){:‘;I; [e"sin(aflzg') +3(sin(2gd 25"+ e's:n(zg'+§'))]}
” o ] . "
2=t ef[cos.@ +(e"+fe)sin L f edo
(e"+Se) cos "~ e'dL sin L' .
(6.3-29)
L=o if emo
4 - ta! :S&'n(%:‘) Shcos h + Sin h” [‘% §i cos (4{') + Sin (%)] of i#0
» cos W [ 384 cos($)+5in (§) ]-siu(§)sh sin n” (6.3-30)
4L =0 if L{=0
‘ § = (Lrgeh) LR (6.3=31)
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The eccentric anonealy is iteratively determined from Kepler's equation

E -~ esimnEg =y (6.3-32)

The true annmaly and radial distance are

£ = tan [““e‘ Sih E] (6.3-33)

CosE ~-e

r=a(i-ecse) (6.3-34)

The Brouwer-Lyddane theory was developed for drag-free orbits
However, the primary influence of drag on high altitude, small eccentricity
orbits is to cause a secular effect in the mean anomaly. The effect is relatively
small and noticeable only over a long period of time. 'I‘herefore_. a first order

" correction to the mean anomaly is optionally {ncluded of the form

mw: Z Z N (t t) (6.3-35)

pro P2
m=0,1,2,...,19

- where

N -y Brouwer drag parameters

to‘ ~ Brouwer drag parameters reference time

The correctiun is spplied to the mean motion in Equation (6.3-10) as follous

[

L - noat vhat o+ g, + af

(6.3+36)
DRAG _




The Brouwer-Lyddane theory, presented previously, requires
the Brouwer mean elemeats a", o', 1", I, g" and h" to commence the pro-
cedure. Usually, however, the osculating orbital elements 890 €4 lo' -2
and h, are provided at initial epoch time toe

To transform the osculating elements to mean elements, a
successive approximation scheme is utilized which involves the Brouwer-
Lyddane algorithm. Given an initial estimate of the mean elements, ay'"
8o''s « . ., the osculating elements at time t, are computed from Equations (6.3-10)
thru ‘ (6.6=3 i) . If these computed elements differ from the specified oscu-
lating elements a5y €5 + « . then the mean elemeats are differentially correctel
by means of a Newton Raphsen successive approximation procedure so as to
cause the computed osculating elements to agree with the a priori specified
elements. To commence the successive approximation procedure, the mean
elements a,", &,''s «+ « . are approximated by the a priori specified osculating
elemeats a,, €, + + «« It should be noted that since At is zero in Equation (6.6-10)
(f.e., t = t), the secular terms i. T;md h in Equation (6.1_3-_11) need not be
caleulated, _ |



6.4 Medium Precision Propagation

Since almos: every type of mission considered at GSFC requires pre-
mission analysis for long periods of time (i.e., months or years) full
high precision integration of the equation of motion is un:enable. A
method of approximating the motion while retaining the important long
term characteristics must be used. The method used in various forms in-

volves the use of averaged equations of motion.

In general, averaged equations of motion are useful only when the
dominant characteristic of the motion is periodicity and all perturbative
forces have characteristic frequencies significantly lower than that of
the basic motion. Thus, the motion uf a satellite whose basic orbit is
elliptical about a central body can je investigated with averaging tech-
niques, whereas the motion of a probe traveling on a hyperbola departing
or atriving at a planet or on an arc of am heliocentric conic cannot be

usefully investigated with these techniques.

The basis for averaging is the technique of variation of parameters
(VOP). The VOP technique formulates the equations of motion in terms of
parameters which are constants in the unperturbed probiem (i.e,, conic
elements). Under the influence of perturbations, these¢ parameters will
then be relatively slowly varying functions of time. The VOP formulation
can be used for full high precision integration of the motion since no

approximation is wmade.

The VOP form of the equations of motion (planetary equations) can
be represented by
Ei = Fi(Ej,t) 1i=1,6; j=1,6 (6.4=1)
where the Ei represent some set of six orbital elements., The full form
of these equations for the classical orbital elements was given pre-
viously in equations (6.2=17 & 18)., The form of the equations for the
set of elements defined by
 p= a(l-ez)
h = e sinw

= e Cosw

6.4-1

k (6.42)
u=s w+ f

i=1i

Q=9




is given in reference 6.6 as

f= Y e
/]
[\
e ]
'}
. TF
®|o :
wm

r. H r 2 A\
-cos (w+f) R + [(1 ——5-) sin (w+ ) to e s.nw] S

-e cos u -'g' sin(w+!)cotlw

K = Jg— sin(w+1)R+[(1 +-—;-) cos (w+i)+'§' ecos‘w] 3

+—pl:- e sinyg sin {w+fcoti W (6-4-_3)

\.x | = qu /x% - (r‘}‘-‘—p- sin (@ + f) cot i) w

i =rcos(w+) W /¢pu
b'n r.’“l-.((.’)f ()_"w / (sini m

where R, S, and W are the compcnents of the inertial perturbing acceler-

ation resolved along the radial, tangential and normal directions.

The general characteristics of the integrals of the above equations
is that they contain short, medium and long periodic variations as well
as secular variations. The short period variations are of the order of
the orbital period or less and are directly related to the motion of the
spacecraft around a single orbit. The other variations are related to
longer ftequency parameters affecting the motion such as the rotation of

the central body or the motion of third bodies.

The objective of averaging techniques is to remove the short period
variations by transforming the set of ordinary differential equations
describing the osculating or instantaneous orbital elements to a set of
ordinary differential equations describing the mean values of the orbital

elements.
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The result of the averaging procedure is that to first order in
the small quantity characterizing the perturbation the se. of ordinary

differential equations in the mean elements is given by

. t+7/2
E =1
=

i F,(E ,t)dt i=1,6; J=1,5  (6.4e6)

t-1/2
where it should be noted that the orbital elements are treated as cons-
tant at their mean values Ej(t) during the averaging integration. The
period r must be defined in terms of the mean value of the semimajor
axis at time t., It should also be noted that explicit dependence on the

fast variable 36 (e.g., true or mean anomaly) has “een removed.

There are two methods of performing the averaging quadrature. Ana-

lytic averaging refers to processes in which the integrals in (6.4-4) are

taken analytically. One great advantage of analytical averaging is that
when the perturbing forces are derivable from a potenéial then only the
potential need be averaged and not all six force equations as indicated
by(6.4<3). This is valid since the order of the partial differentiation
and the averaging integration may be reversed. The equations given in
section 6.2.2 for the perturbing potential in terms of the Keplerian
elements are wriiiten so that the short period contributicns may be spe-

cifically excluded,

For perturbations of a complex nature or for time dependent forces
such as atmospheric drag or tasseral harmonics, the averaging in equa-
tion (6.4-4)is most conveniently performed by numerical quadrature.
Reference 6.7 has found for most applications that 6-point Gaussian
quadrature applied to the averaging interval broken intc one to three

subintervals yields excellent accuracy for almost any application.

The principal advantages of analytic averaging are speed and pre-
cision with respect to the averaged rates--it should be used whenever
possible. On the other hand, numerical averaging offers high flexi-
bility in perturbation modeling. Although slightly mgore expensive,
Reference 6.8 indicates that such flexibility is highly desirable and
useful. Numerical averaging also offers the basis for improved averag-

ing schtemes, which are impossible with analytical averaging.

6.4-3

C ke




. By whatever method the averaged rates are obtained, the differen-
tial equations are then solved numerically using standard numerical
integration schemes which are discussed in section 6.6, Step sizes on

the order of the orbital period may be used.
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6.5 High Precision Propagation

GMAS will include the capability for high precision propagation
but will access GIDS for this capability. The various propagation op-
tions in this mode will include Cowell and VOP formulations of the equa-
tions of motion. The Cowell equations of motion can be integrated with
either a fixed or variable step size with the use of tire regularized
variables available for elliptical motion. The VOP formulation can be

in terms of Keplerian or equinoctial elements as well as the Kustaanheimo-
Stiefel set of variables.

6.5=1



6.6 Integration Methods

The classical integration problem involved in orbital dynamics is
solving the initial value problem specified by

= £0,y,%) (6.6=1)
y(xo) =y,
§lx ) = 3,

where y and f are three-vectors defining the position and acceleration
respectively of a spacecraft, Defining the six component state vector
WI = (yT, 9T) equation (6.6-1) can be reduced to a class I first ordex

differential equation by defining gT = (y, £) and thus

W =g (W, x)
Wx ) =W ' (6.6-2)
o o .

In addition to class ‘I problems, of frequent interest are class I
problems whereby the acceleration is a function of only the position
and possibly time (i.e., in equation (6.6-1) ¥ = £(y,x)). Such problems
occur quite frequently in dynamics and are usually handled by special
class II methods im lieu of reducing it to a class I problem. Such
methods avoid tbhe artificial introduction of first order derivatives,
which may not be of interest, and the pessible introduction of undesir-

able error propagation properties.

Classical class I and II integration methods approximate y at a
sequence of time points (xi =X + ih i=1,2,...) where the step-
size h, is assumed to be a constant. An approximate solution at X, is

denoted ¥i-

Among the many classical methods available for solving initial
value problems one can distinguish between single-step and multi-step
methods. In a single-step method, the value of Yotl cen be found if
only Yo is known. In a multi-step method, the calculatiun of Yotl
depends on explicit knowledge of y_&nd certain "back" values y_ ,,
Yp_20°°" A method is called a k-step method if k such back values are
required. Another distinction between these two types of methods is
that in multi-step methods the function £(y,x) is evaluated only at the

points Xy whereas most single-step methods require the evaluation of £

at intermediate points.
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Although multi-step methods are in general more complex than single-
step methods in that special starting and "memory maintensnce" procedures
are required, they offer the advantage of high accuracy at minimum number
of evaluations of f. If this function is very complex, as is frequently
the case, this results in multi-step methods being much mnre efficient

than single-step methods and, therefore, of more general use.

6.6.1 Single-Step Techniques

Single-step integration schemes require the evaluation of the
function to be integrated f at intermediate points between X and x +1°
The equations for the commonly used four-cycle Runge-Ku:-ta technique are
’ = 1( e W
\(xo'bh) = Y0+E !'(1-%2]'(;2 : _fl\3 ' h4) (6.6=3)

where

el o ln v s le )
K2 = hi g\oi 2‘\,'\0'+2 hl

» - » l v 1-
1\3-—hf(40+'£h,\0+§l\2‘\

The equatione for a seventh-order ten-cycle Runge-Kutta scheme are

given as

\4 \_ __1__ (! > 4 \ 4 -\ -
X(XO-!'h/ =Y, + 41\ K +K9) ¥2lb(l\ +K :+27(h5+k7(+2721\6

0 840 0 8.
where (6.6=4)

= 2 ‘¢ \

Ky = B ( o Yo)

A A 1

‘\1 hf\.\ovah YO 31\0
= ( \‘ -— [ ' \

K, = }\0+2h \0+8 .n\]

K = hf (X + h, Y [K —.ﬂ\ (N ]\

3 0 2
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{ = ( + 1 ___[ } ) K .J\)
h4 hf \ Gh \ 4 81\ + 32 h K 3}’
= (' l —l-[ i ) 4 J\
K5 hf\,\0+ 3h, YO 51 'H\ 2 l\J t ~ll\4 ;
- ¢ . }. [ X ¢ o ¢ r
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+5724K - 6903K_ + 6360K; + 3148 l\7] )
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- 2049K. - 153G + 839K + 5724K
o™ Yo .1346[ 049K, - 183GK, + 839K, 4

0

- 4692K_ + 12081K - 9510K_ + 381(31{,]\,
5 0 ) 8 J/

The above equations are taken from reference 6-9 .

6.6.2 Multi-Step Techmniques

The multi-step technique of interest for GMAS will be the same as
for GIDS, namely the Adams-Cowell ordinate second sum. These formulas
~are of the Newtonian type and define the predictor-corrector Adams method

for first-order 2quations and the Cowell method for second-order systems.

The Adams-Cowell predictor formulas as taken from reference 6.1

are
*
Xgey = h 1 1S, *Z'Bs X i
e (6.6-5).
k
x,,, = h? Vs +Z a, X__.
AT
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§
where .

!S“ = 9t .)En _
(6.6-6)

"Sn = V"2 'i“.

-1

The quantities v_l x(t) and vV © x(t) are called the first «nd second sums

of x(t) and satisfy the relationships
L% (t) - 9TIR (t-h) =X (V) (6.6=7)
and |
TR () -TIR (L= = TR (D) (6.6-8)

The Adams-Cowell corrector formulas are given in reference 6.1 as

k

< 1 3
T h Su M S X =i

v 70

(6.6°9)

The By and ﬁi* are called the summed ordinate Adeas-Moulton predi-
cator-corrector coefficients and the a. and ai* are the corresponding
Stormer-Cowell coefficients. These coefficients are tabulated in reference

. 6.5 for formulas of order 4 through 15.
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6.7 Attitude Model

The modeling of vehicle attitude in GMAS will not include any
six-degree-of-freedom analysis since the detailed analysis of the
attitude system is not the responsibility of GMAS. However, simple
analytic models for attitude maneuvers from nominal cruse to nominal
A V attitude and back again are discussed in Section 9.3. The vehi-
cle attitude during various cruse segments will be stored for use in

mission parameter computations that may involve the attitude.
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: (6.8-4)

m “R3 (6.8-5)

6.8.2 Gravitational Harmonics

As was the case in Section 6.2.2, a central body-fixed coordinate
frame is used, with the final result being rotated to inertial system
for integration. The notation a(t), b(t), and c(t) will be used for the
The matrix a(t) is given by

a(t) =_3_(a¢) 3r | a(a¢)a¢ .0 (iﬂ)ak
ST eE 3t/ a5, af\eelon, o, VN

body-fixed frame.

a7,
+_3_\£ azr*_a_\l_:_ R ¢ +3w A
T aF2 9P AR %N ¥l
where the partials for the first three terms are given by
. r— — 1 2 . y — -
3y/dr oy oY v | [aesaw
312 aro¢ Ar A b
9 . 1 3y LY 32y
Ay | = LA A H/RT -
3?b d¢por ad)z dp A b (6.8-7)
\
2
: 3y/aA oy oy 2y AN/ T
L_ ) L_B Aor - A9 4’ B k) L- ' b

-and the terms of the second partial matrix are given by

‘ N . n n
2 a
i = (-3) (n+2)(n+l) E (C:-cosmk+s: sinmA) P (sind)
31‘2 1'3l T . ) )

m=0 .

‘c

(6.8-8)

N n n
2 2 a . .
%:%_-.ﬁ E (Tp) (n+l)§ (C:COSItt)\4S'|‘\'si11n\>\)x

n22 m=0

, (6.8-9)
[P“':" (sin¢) -m tan ¢ P7 (sin )



N n n
2 2 ’ a
il = oy =- K Z(—g) (n+1) m (ST cosmA - CY sinm )PP (sinp)

‘ SroN OdNor 3 T 2:
n=2 m=0

N n

32 a \" 4

f = 'L_: <_;) 2 (CT cosmA + ST sin mA) {tan d-]"":” (sin )
99 : :

(6.3-10)

n=2 m=0

+ [m? sec? p-mtan? ¢~ n (n+ )] P (sin )}

LY/ 9y n (ap)n m(S® ' m o m+1 .
= == E —_ E S"e A=CPs \) (P sin ¢
Se5% TN 1 (S, cosm nsinmA) (PUT (s )

(6.8-12)
-mtan @ PT (sin¢))

‘ __‘/i = _Z ( ) Z m? (Ch cosmA + 87 sinmA) PT (sin ) (6.8-13)
A2

n®2
. The partials of )" in the last three terms of equation (6.8-6)

were given in equation (6.2-5), the second partials with respect to

32r 1 | _Talu
STi = | (6.8-14)
b
T, T P) Ay \
Ny 1 <3. zb> % T, % (_‘_"2) Ly, <_y11_>
37?2 (xb +yH¥ 0T, r? aT, QT

I—'; are given by

. : - (6.8-15)
3 ¥4 , 2 2
"——-————-—1 Ty _l tz, I- - T, Ty
r? \/xg + yg L P T, 2
- | 0 -10
‘ =Y ) Ay :
2 \ 1
R 2 x| 1% (=) * v <_:ﬁ bt 100
T2 (@+yh | o|L \PT a7,/ xX+vDio o0 0
where 3x,/97, , dy,/37,, and oz, /v, are (1,0, 0), (0, 1, 0), and (0, 0, 1),
respectively.
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. The c(t) matrix is partitioned into e and Cq corresponding to

the two types of harmonics and is given by

e = . (a \/:> dr . d (aw)' LR \ d (oq-) d\
€ dcn\Wr/ew, dem\ed BT, acm WA 5T (6.8~17)
2 (aw) or 3 (w) g 2 (w) A

where the necessary second partials are given by

— ——

9yY/3r -_ll_.(n+ 1) cosmA P" (sin o)
9 ) MYER " - .
— . RV RV -—> - cosmA [pPm*! (sin@d) -mtand P" (sin d:)h(6,8-19)
ace r/ \r n n
9y /3 A L---msin mA PP (sin¢)

. B
— —]

SyY/dr —é(n+1)sinm)\ PT (sin .

3 M np " . . N

o oY/ ¢ :(_r_> = sxnmk[P:*l(sinc;b)—mtand» PT (sind)l (6.8-20)
La\l//ak. | mecos mA PP (sin ¢)

6.8.3 Atomspheric Drag

The matrices for drag are glven by

C.A v yT
B(t) = - oo pq-REL REL . (6.8-21)
b 2m° vm REL
ACt) = _"(.!;) LA (6.8-22)
' P \3R OR ¥ :



where the notation was defined in Section 6.2.3. The relative velocity

VREL has been re-written as

Veer = R=-0Q R

where- ) 1is given by

The partial of P necessary in equation (6.8-22) is given by

i
|

30 _f23r 2% 35 2ANon. s By
9R

3R \5h, 3h ‘34 3h) 5% 3
where '

pM
apm_. Prn
h n'-fg
2 fa
h i,
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(6.8-23)

(6.8-24)

(6.8-25)
(6.5-26)

(6.6-27)

(6.8-28)

(6.8-29)



~ The partialﬁ_derivativc of density with respect to ¢ and the parvtial of yi with
respect to R are

3p _ n S A
39 ° - §COS ! 3 sm_l‘g{(pM T A,) (l 1 [y vos” .5.)
+ p3 [Om + (pkl = pm) cos" %]}

a#’= 1 [i.ﬁu 5 ‘.On
2R sinv[\ p / R} (6.8-31)

The partial of h in equation (6.8-25) is given by

(6.8-30)

§2=§ _ R.{(l - @f -1 cos 5] @(cos f) (6.8-32)
R (1 =-(2f-f2) cos? 5)372 IR
where ot ¥ a

X2z?
d (cos &) 1
- = Y 22 . -

3R R cos & (6.8-33)

-2Z(X24 Y%

The quantities {o, /om, PM’ Hm’ HM’ h, '01, /02, f)3 and ﬁB are

related to the drag co-efficient and atmospheric density model as
described in Reference 6.1. The latitude of the sub-satellite
point is § and the angle 4 is given by

(R, |
¥ = cos R (6.8-34)
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The C matrix component relating to the model parameter /3,

is given by

R
D
ct) = ?T1§§f7 (6.8-35)

6.8.4 Solar Radiation Power
The A(t) matrix is given by

P,R:_7A [ 3[R-R]) lﬁ-"ﬁ,l‘]
A(t)-v s un I"‘ .‘

p—— = =3 (6.8-36)
my [R-R |3 IR - R,]
where the notation is the same as in Section 6.2.4.. The componeut
of the C matrix for the model parameter k defined by
P A
k = (6.3-37)
Mo
is given by
,  [R-R)
C(t) = YV Rtun Y —_ (6.3"38)
IR-R,|°
6.8.5 Finite Thrust
Since acceleration due to thrust engines is independent of
the spacecraft state both A(t) and B(t) are zero. The C matrix
components for the model parameters ao, ceey 34 defined in
Section 6.2.5 are
a a

(6.8-39)
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and for the parameters a(o, vee, &, and § ,

Cy (B)

a {u(t-To)-u(t-Tf)} GTU.(PT (6.8-40)

!

Cg (t) = a {u(t-To)-u(t-Tf)} GTUS(:T (6.8-41)

T .
where G is the transformation from the true of epoch to the mean of

1950.0 system. The matrices ,..T’ Uy and Ug are defined by

Ff= [unr, 22 73 2]

(6.8-42)

, [~ sin a, cos 5.ﬂ
Ud = CcCOS O.T COSs bT (6.8'43)

0

'_- cos a. $1n b‘:
L]x =|-sinag sin 51. (6.8-44)

L coSs ST B

- —— . -

The results of integrating the variational equations to obtain

the state transition matrices under certain simplifying assumptions
are discussed in Section 13.3.

6.8-8




7. MISSION ANALYSIS PARAMETERS
7.1 Introduction

Mission analysis parameters are used for both mission design
and mission control. When used in mission design they are most
usefully made functions of the orbital elements and gan usually
be evaluated through analytical methods. When the mission analy-
sis parameters are used for mission control, a requirement is
levied for recognition of changes in the parameters as the mission
progresses. Because mission control parameters are usually com-
puted from instantaneous numerical values of position and velocity,
numerical anélysis methods are indicated. This distinction between
analytical and numerical analysis methods has generaily been pre-

served in the following discussions.
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7.2 Geodetic Data and Ground Tracks

The geodetic data and ground track data are calculated from
the position vector (x, VY, z) in Earth-referenced coordinates and
the flattening of the Earth. The calculations (Ref. 7-1) are in
closed form and are used in both the numerical analysis methods and

the approximate analytical solutions.

Geodetic latitude ¢* is

* = tan-l Z . 7.2-1
¢ (x2 + yD)%(1 - £)? 7.2-1)
Geocentric latitude ¢ is
¢ = tan~! __z__? .2-2
(x2 +y%) (.22
Subvehicle latitude ¢y and 1ongitude.£ are
¢y = &t 51n']'[f sin2d ( ) - sif\ 48] (7.2-3)
£ = a-ay-ag(t -ty (7.2.4)
Altitude h is
h =1 - 2 Z % (7.2'5)
[1 - (2f - 52) lc__r;,r_l_]
In the above equatioas
. . R RS
Right ascension a: a = tan =~ (7.2-6)
I
1 %1
Declination §: § = tan’ 5 3% (7.2-7)
(xg” +y19)
Epoch time: tg
Greenwich mean sidereal time: ag
Earth rotation rate: veog
Earth radius: Rg
Radius of satellite r: r = (xI2 + yI2 + zIZ)}i (7.2-8)
R i R
Flattening £: f = -2 —R (7.2-9)

REQ

For the suhscripts, I indicates inertial coordinates, EQ

indicates equatorial and P indicates polar.




7.3 Tracking

- The tracking problem of calculating the rise and set times of
a satellite from a ground station has two aspects: (1) the degree
of sophistication of the types of problems solved, and (2) the
methods used. The problems are, in a generally increasing order

of complexity:

o appegrance above the horizon,

o appearance above a given elevation angle for the entire
azimuth range,

o appearance above an elevation angle which is dcpendent
or. azimuth, thus posing a realistic radar masking situa-
tion,

o computsation of critical radar parameters at- the times of
certain events (such as azimuth, elevation, Doppler
rate, range, range rates and aspect angles at times of
acquisition, loss, zenith, etc.),

o computation of rises, sets and radar parameters relative
to an Earth-synchronous communication satellit:, and

0 generalization of the circular area cif trackiug to an
area of any ground shape, such as states and Earth-

resources targets.

Secondly, the methods may vary: (1) continual checking of a
rise-set function throughout the ephemeris of the satellite, (2)
evaluating a closed-form analytical expression only a few times
during an ephemeris. The first method is referred to as a numer-

ical analysis method while the second is an analytical method.
7.3.1 Numerical Analysis Method

The trzjectory is computed point by point to obtain the
position vector r of the satellite which is used in the following

expression along with R, the position vector of the tracking
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station. Both vectors are in inertial coordinates. When the fol-
lowing equation (Ref. 7-1) is true the satellite is rising above or

setting below a given elevation angle Ep.

r + R -rR cos(7/2 - Ep - sin-1 % cos Ey) =0 (7.3-1)
When the left-hand expression goes from negative to positive, a
rise is indicated; from positive to negative, a set. If Ej is set

to zero, as is the case for a rise or set with respect to the hor-

izon, the equation becomes:
r-k-R2=0 (7.3-2)

That this is true is seen from the following figure.

c—— i€ & * R =1R cosa (7.3-3)
| RN ’%B!E MXCN
N 17 : .
t \\ cos a = R/r (7.3-4)
; \E \ r.R= rR(%) = r2 (7.3-5)
e
— "R~ r+R- RZ =0 (7.3-6)

The racar masking situation can be solved by evaluating az-
imuth and elevation pairs as the satellite passes over a station,
This gives a numerically-defined function E(Az). This function

minus an input function of the mask Ej(Az) gives another function
F(Az) = Ei(Az) - Ep(Az) (7.3-7)

The zeros of this function F give the azimuths and elevations of

the rising and setting points.

Azimuth Az and elevation E are found from:

X
= -1 2T
Az = tan -
z v (7.3-8)
1 1 ’ ’
Ey = sin 7.3-
L (xp® +y 2 4 zTZ)!5 (7.3-9)
where (xT, Yoo zT) are the coordinates of the satel.ite in a top-

ocentric system at the station, xp being to the East, yp to the
North and zp along the geodetic vertical.
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Doppler rate Af is found from
. r
Af = -Kp r (1 - ED (7.3-10)
where r is the range rate, Kp is a constant and ¢ is the speed

of light.
Attenuation Ay 1is

At = =40 loglor (7.3-11)

Aspect angles to the tracking station are given in terms
of 9 and ¢. Theta (§) is the angle between the roll aris and the
line-of -sight to the ground station; phi (¢) is the angle between
the negative "yaw'' axis and the projection of the line-of-sight

into the "roll" plane.

T )
tan & = - Eﬂ (7.3-12)
zB T
xB
cos 8§ = 5 7.3-13)

Phi and theta depend on the attitude of the satellite (see matrix
D below) and the position of the tracking station (Typ, TyI' T,1)
in inertial coordinates with respect tc the satellite. Ty 1o TyI’

and T,y are components of the vector T; which is found from

Ir=R - (7.3-14)

The vector (Typ, TyB’ TZB) is calculated from (Ref. 7-2)

TxB 1
Typ| = [P)K]| Ty: (7.3-15)
T8 Tz1

D is the direction cosine matrix of the body-axis system with re-

spect to an orbital reference system,

ces(xg, Xg)  cos(xg, yo) cos(xg, zg)
[D] = cos(yg, xo) cos(yB, yo) cos(zg, zo) (7.3-16)
cos(zp, xo) cos(zg, yo) cos(zp, zO)
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The orbital reference system (ORS) is defined (Ref. 7-2) as
centered at the satellite with xj along the radius vactor, 2z, is
the direction of the orbit pole and yy; forming a dextral system.
(NOTE: For a ci}cular orbit, these axes are up, left and forward,
respectively). The transformation matrix K takes the vector from
the inertial to the ORS system and is a function of inclination i,
right ascension Q of the ascending node and §, the rum of the ar-

gument of perigee wg and true anomaly v.

cosfcosQ + singcosi cosQ-singsini sinQ |

, . . |

[K] = |=-sinficos + cosfcosi cosfl-cosfsini san‘
sini sinQ)

| (7.3-17)

cosfsinQ) + sinfcosi cosftsingsini
-sinfsinQ + sinecosilcosﬂcosesini

~-sini cosQ) cosi

In case the attitude of the satellite is more easily expressed
in inertial coordinates, D should be relative to the inertial sys-

tem and K should be the identity matrix.

Tracking problems from an orbiting Earth-synchronous sat-
ellite can be solved in the same way as they were for ground-based
stations. The position vector of the tracking satellite is used
instead of the ground station, Computational time will be about
the same as for ground stations, the major difference being that
the radius vector of the tracking station is longer. Also, the
value of the elevation angle Ey of acquisition will be approximately

-80 degrees instead of the +5 or +10 used for ground stations,

The fact that the projection of a truncated tracking cone
onto the surface of the Earth describes a circle suggests that the
rise-set problems might also be solved by checking latitude and
longitude of a satellite in circular orbit to see if the geodetic
position falls within the circle. Thus passage over circular areas
could easily be determined. Without any changes ix the mathematics

but at some cost in conputer checking, these areas can be easily



extended to graticules (whose boundaries are lines of latitude and
longitude) or even, with added mathematical sophistication, to
irregularly shaped areas. Such extension (which has been program-
med for Skylab) would be extremely valuable for Earth resources

studies.
7.3.2 Analytical Method

The tracking problem can be attacked analytically by solving
the following equation for the eccentric anomaly E at which the

equation holds and then transforming to time (Ref. 7-3).

F(E) = a(cosE - e)P+Z + (aV 1-e? sinE)Q:Z - G - P(E)sin Ey = 0 (7.3-18)
(see Note next page)
This equation can be solved for E by using Newton's method:

E E () -
= - T 7.3-19
n+l n FI(En) ( )
which is a quickly converging iterative method,
The derivative F'(E,) is given by

F'(E) = [a(cosE - 1)(PyZyg + PiZy) +

af1-e2 sinE(QyZx - szy)] l—’——i—-‘?—‘-’—@-é +

Q- zaV1-e2 cosE - P - Z a sinE (7.3-20)

with the initial value of E on the right-hand side being evalua-

ted by using an approximate value of E given by

1 G + P2 ae

E=S8- cos’ _— = (7.3-21)
a 0@@5 + (9-2‘)5<1-e2> »

The starting value for P(E), the slant range, in (7.3-18) is
P(E) ='{Ia2(1-e cosE,\2 + Goz]

-2G 12« [a(cosE-e)Px + a/1-e? sinE Qx]

-26)2y [a(cosE-e)Py + aN1-¢2 sinE Qy]

-2G12, [a(cbsE-e)Pz + a~1-e® sinE Qz]}% (7.3-22)
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NOTE:

The vectors in equation (7.3-18) are:

where

[Py | [coswcos - sinesinQcosi
P =Py sinwsinQ + sinwcosQcosi
LPZJ; _sinwsini
-Z,J rcos¢cos(90 + w‘E[-E'—-e;@- + T - tg])
Z= Zy = cos<¢>sin(00 +'mE[E—-—§-n—s-§1-E- + T - tn])
_Zz‘ ..Sin¢
er. [-sinwcosQ - coswsinQcosi
Q= Qy = | -sinwsinQ + cosecos{lcosi
LQZ... N coswsini

o ~ argument of perigee

Q ~ right ascension of ascending node

i ~ inclination

¢ ~ station geodetic latitude

6o ~ epoch station sidereal time in radius

wgp ~ sidereal rate of change (Earth rotation rate)

T ~ time of latest perigee passage

n ~ mean motion a = ﬂ:
a-/?7
k .. Earth gravitational constant, # = GMg

G ~~ universal gravitational constant
Mg ~ mass of earth
a~ semi-major axis of orbit

ty ~ epoch universal time

The variables in equation (7-27) not defined above are:

where

G = G} cosézq+ Gy siné

G + h

L8 /1-(2f - £2)sinle
R
(1-£)2 "F0
= 5+ h
62 W(Zf - f<)sine

f ~ flattening of Earth ellipsoid

h ~ geodetic altitude of station above ellipsoid

B = tan-l [9‘.;‘ ,_l_-e
P.Z

and

P ~ slant range from station to satellite

(7.3-24%

(7.3-25)

(7.3-26)

(7.3-27)

(7.3-28)
(7.3-29)

k? .3-30)

(7.3-31)
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When E in (7.3-19) stops converging within a certain limit,
the iterations are stopped and the time of rise or set can be found

from

E-e sinE
t == +T (7.3-32)

1f F'(E) from (7.3-20) is positive, the satellite is rising;
if negative, the satellitc is setting.

After finding the rise and set times, future rise and set
times can be found by adding multiples of the period. Then, using
the value of the eccentric anomaly, the state vector in terms of
orbital elements can be determined from well-known classical equa-
tions. Transformation from the orbital elemernts to Cartesian co-
ordinates in both inertial and rotating Earth systems provide data
with which to compute radar parameters given in equation (7.3-8)

through (7.3-13). N
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7.4 Solar Gecmetry

The required parameters that depend on solar geometry are beta
angle, aspect angles and times of shadowing. The beta angle is the
angle between the Earth-Sun line and the orbit plane. Aside from
being a variable that is useful in other calculations, it is a key
parameter in satellite heating, solar power and surface lighting.
Aspect angles relate the direction of the Sun's rays to the body-
axis system of the satellite. Shadowing times are the times of
sunset and surrise on the satellite, related to both the penumbra

and unbra of the Earth.

These are both analytical and aumerical analysis methods for
calculating shadowing; the methods of computing beta angle and as-

pect angles are analytical,

7.4.1 Analytical Methods

Beta Angle
The beta angle i3 computed from the following equations:

N, = sini sinQ | (7.4-1)
Ny = sini cosQ (7.4-2)
N, = cosi (7.4-3)
N = (Ny, Ny, Np) (7.4-4)
Sy = cosd cosa (7.4-5)
Sy = cosd sina (7.4-6)
S, = sin$ (7.4-7)
S = (8%, Sy, S,) (7.4-8)
B = Sin-l(u'g’ - (7.6-9)

where i is the orbit inclination, Q2is the right asceasion of the
ascending node of the orbit, 81is the declination of the Sun and e

is the right ascension of the Sun.,
Beta can be expanded in terms of the orbital elements i and
Q by
sinf = sini sinQcosdcosa - sinicosQcos3sina + cosi sun§ (7.4-10)

This equation is convenient for finding sensitivities to the orbi-

tal elements i and Q@ by differentiating it.

7.4-1




Aspect Angles

Aspect angles give the relation of the rays of cthe sun to

the tody axes of the satellite. One of these angles (¢) is the

angle between the '"roll" axis and the rays; the other angle (¢) is

between the negative '"yaw'" axis and the projection of the rays into
the "roll" plane. In an attitude control mode where the roll (spin)
axis is perpendicular to the orbit plane, the beta angle itself gives

the total aspect angle.

In a local vertical attitude control mode (with the "yaw"
axis along the vertical), the angle a gives the total aspect angle

where

cosa = cosvcosf _ (7.4-11)

with v being the central angle at the central body between the sat-

ellite and the point in its orbit where the Sun is closest to its
zenith (i.e., "orbital noon"). The aspect angles A ard ¢ are

found from:

Sy -siny cosv 0 cosf
Syl=1 © O -1 0 (7.4-12)
Sz B -cosv=sinv O sinf

with subscript B indicating that the Sun vector is in the body axis

system, Then § and & are calculated from (Ref. 7-1).

cost = — 2 ~ (7.4-13)
(Sy~ + Sy% + 8,9
-8
tend = 5o . | (7.4-14)

In the inertial attitude control mode, with the attitude of

- the satellite given by a 3 x 3 matrix M of direction cosines of the

body axes relative to the inertial axes and the Sun position given
by (S5« Sy, S,) in the inertial system, the comporents of the Sun

in the body axis system are:

Sx Sx .
syl = M1 | sy (7.4-15)
Sz.] Szly

with the I subscript indicating :he inertial system and

cos(xp,x1) cos(xB,yy) cos(xB,zI)] _
[M] = | cos(yB,yI) cos(yB,yr) cos(yB,z;) | (7.4-16)
cos(zp,zy) cos(zp,z]) cos(zB,zl)J
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Then 6§ and ¢ 3are calculated as in (7.4-13 and 14 above).

To obtain the times of shadowing, we equate (Ref. 7-4) the
radius vector at entrance (sunset) or exit (sunrise) of the shadow
to the analytical expression of the radius vector,

R

P = Sin@ty) (7.4-17)
and
T T+e gos(6+71) (7.4-18)
that is, N
;inlza+¢) Tl+e Eos(0+‘/i) (7.4-19)
with ¢ related to 9 through the pseudo-beta angle by
cosy = cosfl cosd. (7.4-20)
Here dj ~ cone angle of the penumbra or umbra,
i =uorp (7.4-21)
for umbra or penumbra and
Ty = Ee—d—'—ikﬁ (7.4-22)
rq - R
ap =~ (7.4-23)

d ~ distance from Earth to Sun
Ry ~ radius of Earth
g~ radius of sun

y ~ angle between anti-solar point ap and spacecraft
at entrance or exit,

B ~ pseudo-beta angle, measured between orbit plane
and anti-solar point,

9 ~ Central angle measured from entrance or e#it to
the orbit midnight point,

vi ~argument of perigee measured from the orbital mid-
night point (point on orbit where spacecraft is
closest to anti-solar point or projection of
anti-solar line on orbit plane),

P ~semi-latus rectum, p = a(l-e) (7.4-24)

NOTE: 7p=7u -
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There are two methods for finding §#. The first is to step
around the orbit in values of 6 until P from (7-53) is 2qual to r
from (7-54). Since § moves in discretevsteps and the point of
equality will not in general be exactly found, a simple Bolzano

interval-halving scheme will find values of 4.

The secord method (Ref. 7-5) is to solve the equality (3)

of P and r which gives a quartic in cos§:

(Cy c0540 + C3 cos3g + Cy cos2g+ Cp cosf +C5 =0

where
C, =c2 - a2
CG3 = -2bc
C; = b2 + 2ac + d%(1 + cos2p)
G = ~2ab
Q = aZ - g2 cosZB

with
a = (p sinacosp - Recos?)2+-(ReSiﬂ02+(p cosar:os&)2
b = 2R{p sinacosd - RecosY)
c = Rz(l-e2 sinzy)- p2 cosla
d = 2p Re sinYcosa

Quadrant checks will place 4 in the correct quadrant.

Once # is found, the time relative to the perigee point can

be found from § + ¥ =+ (the true anomaly by (Ref. 7-6).

- a%Z -1 l-e . ﬁzl-ez sinv ¢
At Yary {2 tan '\/-——H_e tan ¥v - e 170 cosr }

pg being the gravitational constant (GM) for the Earth. Here G is

the universal gravitational constant and M is the mass of the Earth.

(7.4-25)

(7.4-26)
(7.4-27)
(7.4-28)
(7.4-29)
(7.4-30)

(7.4-31)
(7.4-32)
(7.4-33)
(7.4-34)

(7.4-35)

Since the semi-latus rectum p appearing in (7.4-18) is a func-

tion of a and e, the sensitivity of At with respect to a2 or e can

be found by nuinerical differencing.
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7.4.2 Numerical Analysis Method

Beta Angle

The beta angle is computed using the instentaneous state
vector from equations (7.4-8) and (7.4-9) on beta angle. However,
the vector components in (7.4-4) of the orbit ndormal vector N must

be generated by x, y, z, i, }, and z.

The equations then become

E=(x,y, 2) (7.4-36)
V=(x,y, 2) (7.4-37)
(= B XV (7.4-38)
=~ 7] x IVl

S = (S¢, Sy, 52)/|3) (7.4-39)
B = sin'l(ﬁ,- §3 (7.4-40)

where S is the vector from Earth to Sun. N and § wust be put in

the same coordinate system.
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Shadowing
Shadowing data are calculated in essentially the same way

as the first analytical method; using the step-by-step integrated
values from an ephemeris to find a function indicative of passing
through the shadow cone (Ref. 7-5). 1In calculating the shadowing

from an ephemeris, the stepping is done in terms of the position

vector r.
r =(x,y, 2) (7.4-41)
6 =cos”Hz + B/|z]|s] ‘ (7.4-42)
Dy = {lg_l sinf + (|z| cosf- :ia) tan d,} feose,} (7.4-43)
Dy ={|c|sing - (Jz| cosg- s?gn) tan dp} {cosap} (7.4-44)

«p and a,, are defined by (7-58) and (7-59) of the previous
section. D, and Dp are the distance functions to the umbra and

penumbra cones respectively,

When the shadow function Dy or D, passes through zero, a
sunset or sunrise is indicated and exactly determined by a Newton-
Raphson iteration. The sign of the derivative determines sunset or
sunrise - sunset 1f negative, sunrise if positcive. The derivative

is calculated by

o _ . .2

ae -V 2 - (7.4-45)
(P X-5) !

N = Fxs = (o Ny N (7.4-46)
-sina

[z']

Z = cosa : (7.‘0"47)

0 ;

2 = x-»/l-el= (2, 2y, 2 (7.4-48)

"X/S Zx Nx
A

2 =|-ws 2y Ny [z'] (7.4-49)

-2/s Zz Nz
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7.5 Sensor Ccverage and Resolution

Optical, radar, infrared and ultraviolet sensors operate on
similar prirciples as far as coverage is concerned, i.e., they all
operate within the electromagnetic theory, have a field of view,

a resolving power, etc. Here the emphasis is on optical sensors
with later extensions to be made to the longer radar and infrared
wave lengths and the shorter ultraviolet wave lengths. Optical
sensors are discussed with respect to both astronomy and Earth-

viewing missions,
7.5.1 Astroromy

Given a sensor pointing program that directs the sensor at
a point on the celestial sphere defined by right ascension a, and
declination §, with a half-angle field of view of p, the boundar-
ies of the coverage circle on the celestial sphere are given by
(Ref. 7-7).

sing = sin§, cosP + cos§, sinP cos4 (7.5-1)

sinP sinf '
cosé (7.5-2)

sinla

where # is an azimuth parameter and

de = | o - (7.5-3)
Various scanning patterns, such as toruses, can be tased on these

equations,

Given a table of astronomy objectives in terms of right

ascension and declination, an opportunity program can be written
to determine when the objectives fall within the coverage circle,

This scheme is especially adaptable for graphical display.




A first-order approach at resolution is based on a;diffrac-
tion-limited (perfect) telescope and using the Rayleigh criterion.
The resolution between two point sources is given &as the angular
separation 7; given the wave length of the light of interest and
the decimeter D of other aperture this is:

_ l.22

v o= 5 (7.5-4)

The image tube resolution is given as d, the separation in

millimeters between lines on the image tube, with Y in arc seconds

as
Cy 7

d = P, (7.5-5)
where C; is a multiplying factor resulting from energy lost by
secondary obscuration, wave front errors and pointing errors (Cj
is often as 1.5). Pg in (7-83) is the plate scale in arc sec/mm
and is given by 1

2 tan~} 2F -
PS = D (705'6)

where F is th2 ratio of camera focal length to telescope aperture D

in millimeters.

Knowing the line separation d, the bit rate of transmission
k, the bits’/pixel b, the square image tube dimension x in mm and
the required sampling rate s in samples/cycle, the time required
to transmit one x X X picture is

1, 12
¢ = [__(i-) sx] b (7.5-7)

Typical values used are d = 26 mm, s = 3 samples/cycle, x = 50 mm,
k = 500 kilobits/second and b = 8 bits/pixel. Transmission times
are important for deciding whether to transmit in reai time or dump .

to tapec

705-2‘




7.5.2 Earth-viewing

The coverage area on the Earth, unlike on the celestial
sphere, is not bounded by a circle because of the generally varying

distances to the points of the boundary. The input variables are:

d ~ depression angle of the instrument centerline
y ~ yaw angle of the instrument centerline, measured
from the forward direction of the satellite

p ~ half-angle field of view
ag ~ longitude of sub-satellite point

Ao ~ longitude of sub-satellite point

AN «41ongitude of the ascending node
r ~ total regression rate of the ascending node
h ~ altitude of satellite

i ~ inclination of orbit

The elements of the cone are computed by stepping
around the apex of the cone, in say, 10 degree increments of 4.

The central angle ¢y at the center of the Earth is computed from
Rg
R+ h (7.5-8)

¢y = =o0s

RE being the radius of the Earth. Then the angle dg is computed

from
dE = sin-l [cospsind + sinPcosdcosH] | (7.5-9)

If dg is greater than ¢y, the cone element does not intercept the
Earth and boundary points lie on the horizon circle. These bound-
ary points arec denoted by ay, Ay. If dg is less than ¢y, the cone
elements do intercept the Earth and the boundary points a1, Ay on

the interception boundary are located.

The azimuth A, for each fis computed from

A, = sin'l(cosi/cosAo) +y + sin-l (Eigﬁtiigi) (7.5-10)

For the interception case, the central angle ¢I is
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R + h
$1 = sin”} ['ERET—' Vi - (cospsind + sinfcosd cose)éj (7.5-11)

Then the coordinates of the boundury points whether it lie on the

horizon or in the intercept and located by:

Ak = sin'l(cos¢k siny, + singy cosa, cos A)) (7.5-12)
ar = -1 singk sin A, )

k = @y + sin cosAy (7.5-13)
k=H, I (7.5-14)

Resolution of Earth-directed sensors has some similarities

to stellar-dicected sensors.
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7.6 Relative Vehicle Geometry
The relative position Pg and relative velocity Vp of satel-
lite 2 with respect to satellite 1 are given by

PBR=2 - P (7.6-1)
Vg=Y, -V (7.6-2)

Aspect angles of satellite 2 with respect to satellite 1l are
given by the generally similar equations as for computation of Sun

aspect angles and tracking station aspect angles. Thus,

X{ = X2 - X} (7.6-3)
Yy T Y2 - Y1 (7.6-4)
2i = 23 - z] (7.6-5)
XB Xj .

yp |= [®)vi (7.6-6)
zg zi

with M giver by (7.4-16). The aspect angles and are

XB
cosg = §7==7=====3=====f= (7.6-7)
tan¢ = (7‘6‘8)
ZB

The mutual visibility can be determined by evalvating the vis-
ibility function between satellite 2 and satellite 1 (Ref. 7- ):

2

2
R = (B2 - B1)2- Pol 2H(p, 24 ) s2287R - I (7.6-9)

where

S

Rg being the Earth radius and hymM being the height of the atmos-
phere. When R is negative, mutual visibility is implied; a& posi-
tive value denotes non-visibility. R must be cvaluated on a point

-by-point check of the two ephemerides.

7.6-1




‘ 7.6 Orbit Stability

7.6.1 General Formulation

A basic problem in highly-eccentric earth orbital analysis is
that of orbit stability. Orbit stability refers to the characteristic
of orbits whose time-varying periapsis radius remains over its initial

value while under the perturbative influence of lunar and solar grav-
ity.

The relevant equations describing orbit stability may be derived
from writing the third body gravitational force as the perturbating ac-
celeration in the planetary equations (Reference 7-12). Then the time
derivative of the perigee radius q = a(l-e) to first order in (r/aD) is

. 2(1-a2
q=- ‘];E;i[(ae sin £f) R + (a i 2 . r)S:] (7.6-1)

“Dr
R=—22(1+3cos 2 0)
ZaD3

-3unr
“ S = D3 [: cosY 8in (w+f) -sin<Y cos (wW+f) cos i:] cos @ (7.6-2)
ap

where r is the satellite radius from the earth and a, is the semimajor
axis of the disturbing body relative to the earth, and where the non-
standard parameters are illustrated in Figure 7.6-1. In writing equa-

tion (7.6-1) we have anticipated the result that Aa = 0 for third body
accelerations.

SATELLITE

|
|
|
|
|

a ) N °‘\ /
o
ASCENTING DISBYOLgi'ewG
’ HOOE L

Figure 7.6-1., Definltivn of Varlablen
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The singly averaged form of equation (7.6-1) is obtained by assum-
ing the disturbing body does not move during one orbit of the satellite.
Then equation (7.6-1) may be integrated over one period of the true anom-
aly £, yielding the change in perigee per orbit iq where

aq = B(a,e) g(?,w,1) (7.6-3)
where 9
B(a,e) = ‘%‘(%—) ae(1-e2) /2 (7.6-4)
D

T =27 a3/#

g(Y,w,1) = sin 2 Y cos 2 w cos i-(cOSZY-sinzyboszi)-sin 2w

The doubly-averaged equations describing the long term periapsis
radius evolution are generated by averaging the singly-averaged equation
over the period of the disturbing body. Then the formal integration in-
dicated by the equation '

N Tp .
aQ = D aqy ~f Aq(t)dt (7.6-5)
i=1 0

is carried out with the motion of the disturbing body ¥ represented by ¥
Y= %y + ¥t = ¥ +opt (7.6-6)

The result can be written

Aq = Kg [%1 sin (2npt + Kp) + Kyt + Ké] (7.6-7)
where K, - _8_5_ '/;T— 5.2 (-1-_e2)

KL= - YK K

K, = tan"l (Kg/Kg) + 7 + ¥pg |

K3 = - '/%_3'3' (sin 2 w sin®t) (7.6-8)

K, = initialize Aq =0 at t =0

K5 = cos 2 wcos t

% sin 2uw(l + coszi)

~
(=
L]
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7.6.2 SABAC Technique

The general formulation of the third body perturbative effect
on the perigee evolution was presented in the previous subsection to
motivate the following summary of the techniques used in program SABAC
- Stability Analysis by Approximate Criteria (Reference 7-13). The
normal SABAC documentation is quite difficult to follow. Therefore
the SABAC equations will be summarized but reference will be made to
the above general formulation.

The SABAC approach evaluates a candidate orbit for a series of
approximate criteria until the first criteria violation. It then imme-
diately proceeds to the next orbit. The criteria are as follows

1) Long term stability:
1/2
(Ae)LR - £ i AssinzissinZU8 + AMsinziMsin2un)<§ 0 (7.6-9)

with
Ag = 15m(up/ug) (a/Bp)> €372 (7.6-10)

€ = 1.2

This corresponds to requiring the linear term of (7.6-7) to be
positive (i.e., (KgK3)g + (K0K3)M >0)

2) Short term stability:

(4e)sR = -e e”z{ (il €1070985 y Hagl € 83/2)33,8} <o (7.6-11)

where 83 p = El pé2 D(PD/rD)3 and 51’52 are the projections of the unit
] 3

vector to the disturbing body on the line of apsides and semilatus
rectum, respectively. This corresponds to keeping the perigee altitude
from decreasing during the first orbit, i.e., from equation (7.6-3)

Bg 8(Ygrwgrlg) + By g(PowpM i) > 0 (7.6-12)

3) 1Intermediate range stability:
(4e) T = (Ae)<,,k’$>’M + (de)m’M L0 (7.6-13)

in which<sR,s >,M means the short range effect of the sun averaged
over the lunar period. This corresponds to determining that the aver-
aged effects of the sun and moon for the first month result in increased
perigee radius.

4) Lunar Ripple:

12 J. Ay A (1) )
degk = - e€ :‘::1 €37 PaM ¥ a7 Bae <O (7.6-14)

in which j 1s the number of passages at perigee over half a lunar month.

+
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This criterion corresponds to restricting the lunar sinusoidal
term of Equation (7.6-7) from causing perigee to decrease below its
initial value when the sin term reaches its minimum (negative) value
during the first half-month.

5) Solar Ripple:

ae <sR,s >,M >AeLR or, 1if not satisified, (7.6-15)
. ere | 6-1
“wr < 9V3 | **<sR,s>M ° eLR_J (7.6-16)

This criterion supposedly corresponds to insuring that the solar sinu-
soidal term does not cause perigee to be lower than its initial value
(equivalently, eccentricity to be higher than its initial value). The
derivation of (7.6-16) 1s uncertain; an -jproximation to it can be
found in the following manner. Let the change in eccentricity due to
the sun be written

de = at + bsin 47t (7.6-17)

where t is measured in years. For stability, the conétant a is assumed
to be negative leading to a long term decreasing trend. However the
sinusoidal term could cause a local maximum near t = 3/8. To insure
stability even in this 'worst" period we require

ae(t -%) -%3- b< 0 (7.6-18)

The constants a and b may be approximated by setting

AeLR = a

dae
Ae<sR,s>,M it (t =0) = a+ 4mb (7.6~19)

Combining the two previous cases results in the condition

2
e r <3w (Qegp g5~ dep) , (7.6-20)

which is a general approximation to the SABAC result stated in (7.6-16).
An alternate approach which appears to be preferrable would be to use
the full equation (7.6~7) to estimate both the lunar and solar effects
directly and avoid the numerous and unnecessary approximations indica-
ted above.

6) Very Long Range Stability:

There are two versions of SABAC corresponding to two methods
of computing the very-long-term stability. Both methods essentially
use the constants of Lidov's theory
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Cl = € cos?i
c, = (1-e)(§ - sin?i sinw)

6.a) In the first method the extremal values of € = 1-e2 are
determined as follows. If C; >0

5
etnax"l"Zc2

/2
1 2 20
If C5 < O they are computed as the roots of
5 ]
ez-[1+-3-(cl+cz)] €+35C =0

In the above two sets of equations the parameters are computed as
though the moon were acting alone. Then

max - €0

sin Eg = €max"€min

0<E<g 73

Tyrr ™ "(emax-emin) €08 Eg Tg,q |Aepem |

where Aeyyy is computed by (7.6-13). The very-long-term stability is
assumed satisfied if

ZEO
T*¢ = Tygp (L - ) 2L

6.b) In the improved version of SABAC for near-polar orbits
the very-long-term stability is computed differently. An auxiliary
plane, denoted Pp is constructed by rotating the ecliptic by i about
the nodal line of the moon where

Ay
e (mrs) o

The predicted lifetime L is then computed from

L o= 2(7 - wp) %%

(7.6-21)

(7.6-22)

(7.6-23)

(7.6-24)

(7.6-25)

(7.6-26)

(7.6-27)

(7n 6"'28)

where W5 1s the satellite argument of perigee referred to the auxiliary

plane P,. The last term is computed from
(e.ca).(a».) +(.A_~a) (1 +w)
At At LR,M At IR,s

where

7.6-5 “
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(%‘i’-)m D= Ay [(Coszip-e)sinZwD + -23'-5-] /262 (7.6-30)

The documentation does not detail how the factor w is computed.

7.6.3 Alternate Approach

An alternate approach to that of SABAC should be considered which
could be as accurate, more efficient, and much clearer than SABAC. This
would involve the direct use of aquation (7.6-7), possibly in conjunc-
tion with the proceed-until-condition-violated approach of SABAC. The
SABAC technique appears especially questionable in the analysis of the
so-called lunar and solar "ripple" effects. Significant improvement
in this area could be made with equation (7.6-7) in this respect,
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7.7 Lifetime

The equation for the approximate lifetime L is given as a

function of initial perigee altitude hp in km, initial apogee alti-

tude hy in km, ballistic coefficient B and date of launch ty in

years (Ref. 7-9).
ty +L
L *n-1

Lp = L3 X fp (hp, t, + Ly (7.7-0)

tL

where ] indicates that fp is averaged over the period from tj to

t;, + Lh-1. The iterative process indicated in (7.7-1) is carried
out until

<€ (7.7-2)

'Ln-l - Ly
where € is a preset small lifetime tolerance figure set by the user.
L3 in equation (7-101) is

Ly = Ll(hp:hA) * B £i,(i,0) (7.7-3)

B is given by

M '
B = Coh (7.7-4)

where M is the mass of the satellite in kg, Cp is the drag coeffi-

cient and A is the reference area in square meters,

The functions fD(hp, ty, + Lp-1), Ll(hp:hA) and fim(i,w} have

been precalculated and can be stored as tables.

The function fp is conveniently expanded in a polynomial ia hp
(Ref. 7-10) as
tp = fDl(t)+fD2(t)hp+fD3(t)hp2+fDA(t) hp3 (7.7-5)
where

t = 4(ty - 1974.00) + 1 (7.7-6)

t;, being in fractional years to the nearest 1/4 year. Table 7.7-1
gives fp for a nominal density 1962 U.S, Standard atmosphere and

for a +20 density atmosphere over the period from 1374,00 through
1984.75.
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The function Lj polynomial has been made an exporential in a

polynomial power in circular altitude h. (Ref. 7-5):

3 4
o L1+ Lahe + L3h.Z + Lgh” + Lghg

L =

with
Ly = -.135 x 10? (7.7-8)
L, = .713 x 107} (7.7-9)
Ly = -.143 x 10-3 (7.7-10)
L, = 1.0 + .167 x 107° (7.7-11)
Lg = -.778 x 10-10 (7.7-12)

The function fjw is a function of i only when circular orbits

are considered (Ref. 7-5):

£io = £; + £, i+ £, i2 + £, 13 (7.7-13)
iwl iw? in3 iw&

with
£i,1 = 0.934 x 109 (7.7-14)
fiw2 = -0.486 x 1073 (7.7-15)
£,,3 = 0.120 x 10-3 (7.7-16)
£i.4 = 1-0.992 x 107° (7.7-17)

7.7-2
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8. LAUNCH PHASE ANALYSIS

8.1 Introduction

This chapter summarizes the mathematical details of launch
phase analysis. Launch phase analysis determines the trajectory
and maneuver sequence from launch to insertion onto some target
orbit. The orbits encountered are the parking orbit, the transfer
or intermediate orbit, and the target orbit. The maneuvers are in-
sertion into the parking orbit, injection into the tramsfer orbit,
and insertion into the target orbit. The timing of the launch (both
in terms of calendar date and time-of-day) is a critical element in
launch phase analysis because of the constraints to launch from

specified launch sites in a general direction (launch azimuth).

This chapter attempts to provide a unified discussion of launch
phase analysis. Launch is quite different from the usual orbital
analysis because of the special parameters used to describe launch.
Thas frequent references are made to other sections of this report

for the detailed formulation of general parameters.

Section 8.2 descusses the determination of the launch prefiie
from a standard set of launch parameters. Section 8.3 describes how
this profile is used in a launch period/window analysis. Section
8.4 summarizes the techniques and models used in detailed launch
phase trageting. Section 8.5 discusses launch phases zrror analy-

sis.
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8.2 Launch Profile Determination
8.2.1 Definition of Standard Profile

The standard launch profile will be assumed to consist of a circular
parking orbit, a coplanar (Hohman) transfer orbit, and a circular target orbit.
Instantaneous, impulsive maneuvers will be assumed throughout. Variations to

this "standard" profile will be discussed in Section 8.2.4.

This standard profile is as simple a model possible yet yields very
useful data in a first-cut launch opportunity assessment study. It is an
excellent approximation to the synchronous orbit profile (Ref. 8-1, 8-2).

The profile is defined by specification of the parameters listed in Table 8.2=1,

Launch date DL

Launch site latitude ¢L’ longitude BL, azimuth ZL

Launch time-of-day tL or parking orbit ascending node Qp
Parking orbit radius RP

Target orbit radius RT’ right ascension QT’ inclination iT
Long or short coast flag, k (see 9-15)

Integer number of parking orbits NP or transfer orbits NI
Table 8.2-1. Standard Launch Profile Input Paramcters

8.2.2 Launch Timing and Orbit Plane

Two possibilities exist for the specification of the launch time-of-day
and the resultant parking orbit plane. The required input parameters are the
launch date, DL’ the launch site latitude QL and longitude GL’ and the launch
azimuth ZL. Then with the specification of the launch time-of-day cL’ the
(inertial) right ascension at launch GL and the equatorial inclination i _,
ascending node longitude Qp, and normal vector N of the launch plane may be
computed. Equivalently if the ascending node QP is specified, the launch time-
of-day and the other parameters may be computed. A clear concise development
of these calculatioms is provided below with most variables defined in Fig.

8.2-1 and formulation derived from spherical trigonometry.

Launch Time-of-Day Input:

- 8.2-1
o (GHA + 8, + cL) mod 360 ( A )
N = |sin OL cos XL - CO8 eL sin OL sin ZL :
- - W2=2
cos OL cos EL sin @L sin QL sin XL (8 )

cos ¢L 8in ZL
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- -1 '
ip = cos (Nz) 0 s_ip <90 (8.2<3)

= -1 8.2-4
a, = tan ( ux/ny) 0 <q, < 360 ( )
Longitude of Ascending Node Input:
-1 o
ip = cos = (cos o sin ZL) 0 <i <90 (8.2-5)
N = (sin q, sin i, -cos a sin i, cos i) (8.2-6)
o, = (ﬂp +48) mod 360 (8.2-7)
vhere 40 = 90°, if I = 90°
90°—cos-1(tan OL/tan i), 1if EL < 90° (8.2-8)
90°+cos-1(Can QL/tan ip), if £, > 90°
(eL -0 - GHA) mod 360
tL = © (8.2-9)

In equations (8.2-1 and -9), GHA is the Greeuwich hour angle at of' UT on the
launch date, given by

GHA = 100007554260 + 029856473460 T gt 2.9015 x 10783 1 dz (8.2-10)

vhere Td = days past Oh January 1, 1950. In those equations eL is the input

launch site longitude and w is the rotation rate of the earth.

In either case the definition of RTN coordinate system defining the launch
plane (Figure 8-1 or 8-2) can ncw be completed

. = i 2=
R = (cos O, cos QL’ sin 6, cos &, sin ¢L) (8.2~11)

L L
T=NxR (8.2-12)

8.2.3 Trajectory and Maneuver Sequence

Having determined the launch plane and timing, the next step is to com-
pute the trajectory and maneuver sequence for the standard launch profile. The
intersection of the launch plane (containing both the parking orbit and the
transfer orbit) and the target orbit plane is first computed. The target plane
normal NT is given by ‘

~

NT = (8in QT 8in i,, -cos QT sin iT’ cos iT) (8.2-}3)
Define the auxiliary vector Io as the quantity
N, x N

T

i- .24
om (8.2-14)

Io then defines the intersect:ion of the launch plane and the target plane,
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Let I represent the vector to the point of injection from the parking
orbit to the transfer orbit. Then assume the user states his preference for
short or long coast by specifying the flag

k = +1, short coast .
(8.2-15)

-1, long coast
The geometry discriminator K is computed from
K=(Rx io) * N (8.2-16)

K is then +1 with the positive sign corresponding to io lying in the first or
second quadrant of Figure 8.2-2; the negative sign corresponding to the third or

fourth quadrant. To force I to point to the injection point I must be set to
I=k: K- io (8.2-17)

With these definitions the trajectory and maneuver sequences 2re determined.

The conié descriptions of the three phases are summarized in Table 8.2-2. The

parameters RP RT’ i ~and QT are input variables. The parameter Q is either

input or computed from Equation(B 2<4), The parameter i is computed from either
Equation (8 2-3) or 8.2-5). The parameter wy is computed as follows. The unit

vector to the ascending node of the parking orbit is Ap where
A = (cosq_, sinq_, 0) 8.2-18
P p’ p’ ¢ )

Then w, (0 < w, <360) is defined by

I
sin wy = AxI) N

(8.2=19)
cos wy = A1

Parking | Intermediate | Target

Orbit Orbit Orbit
Semimajor axis, a R, ¥ (RP + RT) R,
Eccentricity, e ] (R,I - RP)/2aI 0
Argument of Perigee w - wy -
Inclination, 1 i i i

P P T

Longitude of ASC Node, Q Q Qp Qo
Entrance True Anomaly, f - 0 -

Table 8.2-2. Launch Phase Trajectory Description
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The computatior. of the critical points within the sequence are summar-
ized in Table 8.2.3, The basic hirections in the inertial equatorial system are
those of the launch site at launch R(8.2-11) ,the velocity at launch - (8-2;12),
the idjection and anti-insertion position i(8.2-17);he injection and anti-

insertion velocities § and the post-insertion velocity direction P where

N>
2>

x I (8.2-20)

x I | (8.2-21)

">
fl
V'i=)

Tnsertion into | Injection into | Insertion into
[Parking Orbit | Transfer Orbit | Target Orbit

Position Vector RP ﬁ RP i &RT i
ML LRPJE.
Pre-maneuver Velocity - -1 S ‘I S

’?r i :IRP : '\%r-)

Table 8 2-3. Launch Phase Maneuvers

Post-maneuver Velocitﬁ (2—

Finally the times of the maneuvers must be computed. Some generality is
permitted here by allowing waiting several periods beZore performing the in-
jection or insertion maneuvers. Let N, be the integer number of "waiting"

parking orbits and N_ be the integer number of "waiting" tranafer orbits. The

I
angle between the launch and the first opportunity for injection is ec

(1] <8, < 360) where

sin §_ = Rx1I)+N

o (8.2.22)
cos g =R 1 ’
c
The total coast time in parking orbit is then
= . 3 8.2-23
(o, + N, 360) (R /W) (360) ( )
The total coast time in the transfer orbit is
¥
3
T, = (NI + %) 2v (a;"/w) (8.2-24)

8.2.4 Variations to Standard Profile

The standard profile described in the previous three subsections is ef-
fective because it can be generated very quickly for each use over a wide range

of launch dates D; and launch times e (or ascending nodes QL). The standard
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profile provides a generally adequate simulation of the launch phase for most
missions. However, closed-form analytical solutions may alido be computed for
other variations of the launch profile. These variations ir.clude eccentric

target orbits and non-coplanar transfer orbits.

Eccentric Target Orbits

The standard formulation may be easily adapted to eccentric target orbits.
It is possible that eccentric drift orbits might be desirable for eccentric
synchronous missions such as the International Ultraviolet Explorer (IUE)
mission. The additional input required to describe the target orbit includes
the eccentricity ers and the argument of periapsis Wps while the semimajor

axis a, is substituted for the radius of the target orbit x Rr.

In this variation the transfer orbit is still assumed to be a Holman
transfer lying in the parking orbit plane. The calculations are identical to
the standard profile through Equation (8.2-19). However, the intermediate
transfer orbit must now be computed in terms of the elliptical input elements

(aT, ers wT) instead of the radius R,.

The vector to the ascending node of the target orbit is given by

Al

AT = (cos 2, sin Gy, 0) (8.2-25)

An auxiliary vector BT may be constructed in the target orbit plane as

BT = &T x RT (8.2-26)

The vector to perigee, PT’ is then given by

-~ -

PT = o3 Wy AT + sin w, BT (8.2-27)

The true anomaly at insertion fI (0 < fI < 360) is then computed from the known
direction of the insertion point (-I) as follows:
sin £, = Ax?)° N

T T

- a (8.2-28)
cos fI = . PT 1
The radius to the insertion point is then givem by
ay (1-ed)
Ry = Tre, cos E, (8.2-29)
T %% %1

The radius RI then replaces the variable RT in Table 8.2«2 d:scribing the inter-
mediate orbit., The input variables (aT, ers uT) are of course entered into

the target orbit parameters,
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The only other parameters affected in standard launch sequence is the position

and velocity following insertion into the target orbit. The speed at that
point is given by ’

RS 8.2
v u(RI aT) (8.2-30)
The flight path angle Y (-90° < y < 90°) is givea.by.
2 sin £
tan = T:Z;—E;;_f (8.2-31)

The position and velocity following insertion into the targat orbit are then

Rp(ty) = -Rg 1 (8.2+32)
Vp(tp) =V P (8.2-33)
P = -sin v I + cos ; (I x ﬁT) (8.2-34)

Inclined Transfer Orbits

The ability to specify the longitude of the ascending node of the parking
orbit as an initial condition (Section 8.2.2) permits the evaluation of Hohman
transfers involving inclined intermediate orbits. The inclusion of such trans-

fers may be necessary at some time to meet peculiar rission requirements while

satisfying mission copstraints.

The critical feature of such a transfer is that the nodes of all three
phases are collinear, resulting in a 180 deg Hohmsn transfer. MNote that if
this assumption were removed a unique solution could still be detemined via
Lambert's theorem if the transfer orbit transit time were specified. However,
the intuitive feeling is that the Hohman transfer would be noar optimal and

numerical techniques (see Chapter 11) would be required to determine and prove
the global optimal solution.

This extended possibility for launch analysis could be easily developed
using the Sun technique (Reference 8-3) implemented in the post injection trim
analysis in MAESTRO (Reference 8-4). The Sun technique generates analytically
the optimal two-impulse 180° transfer between non-coplanar orbits. The mathe-
matical details of this method are supplied in Chapter 17. The method, however,
results in the specification of the trajectories and maneuvers of the launch
sequence defined in Tables 8-2 and 8-3. The Sun technique is a powerful :ech-

nique and recommended for use in the launch phase analysis. :
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8.3 Launch Window Analysis

The previous section discussed the construction of an analytic launch

profile. This section addresses the evaluation of such a launch profile in
launch window analysis.

Launch window analyses determine the optimal launch dates (or equivalent-
ly the launch period) during which time adequate daily launch windows exist. A
daily launch window is defined as a continuous interval of time on a single day

that a launch may be made which with the ensuing transfer satisfies all mission
and system constraints.

8.3.1 Method of Analysis

The launch window arnalysis generally has two principal independent param-
eters: the candidate calendar dates and the ascending node or time-of-day of
launch on each date. Critical parameter constraint contours are then plotted
on the grid whose principal axes correspond to these time-variables. Anm
example is given in Figure 8.3-l taken from Reference 8-«2. The contour plot is
of a launch period-launch window analysis made for the Synchronous Meteorologi-
cal Satellite (SMS) mission. The critical mission-system counstraints for this
mission were those on shadowing in the parking and transfer oiybits and solar
aspect angle at insertion into transfer orbit and synchronous orbit. The
hatched lines represent regicus that violate the solar uspect angle constraint;
the light solid lines define contours of constant (acceptable) transfer orbit
shadow duration. The two open belts define the time-varying launch windows
during the given launch period., Other studies demonstrated that optimal fuel
requirements occurred at ascending node values at @ = 225 and 305°. The final
launch time strategy as a function of launch date is then damonstrated by the
heavy solid line of the figure. Such a plot is extremely usEFul in launch

window analyses and should be the primary output of those studies,

8.3.2 Computational Flow

The general computational flow for launch window studies is illustrated
in Pigure 8.3-2. The structure is essentially the same as that of FLAP (Refer-
ence 8-1) bﬁt with the launch time and launch date loops reversed. This re-
vised structure permits the one-time computation of launch date peculiar data
such as the Earth-Sun direction or the Greenwich Hour Angle for the range of

launch times, The launch time or ascending node computation was given in
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Section 8.2.2. The trajectory/maneuver sequence computations were presented

in Sections 8.2.3 and 8.2.4. The computation of the mission/systems constraints
is discussed in Section 8.3.3 below.
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Figure 8.3-2. Launch Window Analysis
<
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8.3.3 Launch Phase Constraints

Constraints are imposed on the launch and transfer phases of a mission
by the mission objectives and spacecraft systems requirements. The parametcers
considered in the launch window analysis are generally amenable to simple for-
mulation and efficient computation to facilitate the necessary wide scans in
launch date and daily launch time. After identifyihg attractive dates and
orbits more detailed studies may be made (Section 8.4). Cardidate launch
phase parameters are given in Table 8.3-3 below.

Shadowing

Earth Site Pdissages

Orbit Lifetime

Orbit Stability

Solar Aspect Angles at Maneuvers
Station Visibility at Maneuvers

Table 8-3'3- Critical Launch Parameters

The first fouxr parameters are based on the orbits of the transfer phases as
given in Table 8.2=Z: the latter two on the critical states at maneuvers as
given in Table 8,2-3,

The shadowing data needed includes the start time and duration of each
shadow within each of the orbits encountered along with the total time-in-
shadow encountered. The earth site passage data includes the time of entrance
and the duration over specific earth sites, (e.g., science target sites or
tracking sites) and the total time over sites. The orbit lifetime computations
are analytic expressions for gross estimates of the lifetime for low-altitude
drag~affected orbits. The orbit stability approximations determine the life-
expectancy of high-altitude orbits affected by third-body gravitation. Either
of these computations if efficiently formulated is appropriate for launch
window studies. The solar aspect angle at maneuvers is critical because it
defines the vehicle maneuver attitude relative to the sun which may expose
sensitive instruments to sunlight or violate solar array requirements. The

station visibility at maneuvers may be necessary for maneuver implementation.

The mathematical formulation of each of these parameters is detailed
in Chapter 7.
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8.4 Detailed Launch Targeting

A slightly different kind of launch phase analysis capability
is represented by the routine START of Reference 8-5. This is the
capability to target to desired conditions using realistic launch para-
meters as the control parameters. This targeting capabilily uses the
results of the launch window analysis to narrow the range of appropriate
launch dates initially. The START capability provides a refined and
extended analysis of the launch phase for a specific date and approxi-
mate time of launch. Suggested extensions to the START capability in

Section 8.4.2 would appear to be extremely useful.
8.4.1 Detailed Launch Profile

‘The detailed launch profile input parameters are defined in
Tablefs:;-l and illustrated in Figure 8.4-1, The detailed model permits
the boost or ascert arc and the injectidn arc to be modeled as finite
duration in both zngle and time. Furthermore, the injection burn it-
self can be modeled as a finite thrust maneuver. The parameters defining

the parking orbit allow its modeling as either a circle [FP-O, VP-(u/RP)g]
or ellipse (PP % 0).

The conversion of thegse parameters into a post-injection state
suitable for targeting closely parallels the development of the standard
profile defined in Section 8.2. The launch time-of-day iaput option is
required for this application so equations (8.2-1) through (8.2-4) are used
to compute the normal ﬁ, the inclination ip and node onf the parking
orbit. The RIN coordinate system is then established at the launch site
(at the launch time-of-day) via Equations (8.2-11) and (8.2~12),

The state at the burnout point following the intertion into park-
ing orbit. This state is computed as

Ry =R, (R cos w;. +T stn¥) (8.4-1)
Ve =Vp (-R sin, +Tp) + T cos (¥ + Tp) (8.4n2)
ty = tL + AtL (8.4=3) -
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1{1r4¢ Figure 8.4=1., Detailed Targeting Profile

N

Fixed Control
Phase Parameters Parameters
Boost : Launch site longitude eL Launch azimuth XL
Launch site latitude @L Lauach time tL

Central angle of burn wL*
Time interval of burmn AtL

Parking Orbit Burnout radius RP Parking orbit coast time Atp
Burnout velocity VP

Burnout flight path angle Tp

Injection (Im- Central Angle of Burn § Injection in-plane angle a
pulsive) L
Time interval of burn Aty Injection out-of-plane angle 8
Injection magnitude AV
Injection (Finite Vehicle mass before burn M a
thrust) Mass flow rate in ° 8
Thrust magnitude T Burn time ta

Table 8.4-1, Detailed Targeting Parameters
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The preinjection state (RI, Vis tI) is then computed. With the

assumption of a circular parking orbit the state is given by

.B& =R, (R cos x t T sin x) (8.4=4)
Vi = Y (-R sin X+ T sin X) (8.4=5)
t; =ty +at, (8.4=6)
where
- 3.5 - ‘
wp = @/RP) (8.4-8) {

and where AtP is the control parameter of parking orbit ceast time.
In the case of elliptic motion and/or a more accurate propagator, the
state at the end of insertion burnmout is propagated forward over the time

interval At to generate @_i, y_i).

P
‘ The post-injection state depends directly on the parameters de-
fining the injection maneuver. The current model (Ref. 8-5) is based
on a fixed attitude maneuver using either impulsive or finite thrust.
The direction in either case is specified by the in-plane (elevation)
angle « from the premaneuver Yelocity vector VI and the cat-of-plane
angle B described in Figure 8.4-1,The right ascension of the premaneuver

velocity vector in the RIN System is
s = can  (Vp/Vp) 0<§ <360 (8.4-9)
Then the directicn of the injection burn is given by
AV = cos cos (a)R + ccsBsin (a+6)T + sin8HN (8.4+10)

The post injection state for the impulsive model is then given as

+

R=K \ (8.4-11) -
vi = V2 o+ AV, AV 8.4-12
-1 1 I (8.4-12) .

+ o
. tI = CI + AtI (8.4*13) i

The post injection state for the finite thrust model is given in

Section 9.2.
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8.4.2 Targeting and Optimization
” \

The six controls defined in Table 8.4~l may be varied to satisfy up
to six target parameters. If the number of controls exceeds the number

of targets some quantity may be minimized as well.

For general earth orbital targeting it is reasonable to define the
target or performance variables in terms of the state following the post-
insertion burn (8.4~11; 12, 13).This permits a standard formulation of
the general targeting process. Assume that the target parameters are the
six conic elements denoted by the vector I. Let the desired values of
these parameters be denoted t*. Then let the K-th iterate of the control
parameters be denoted GK and the corresponding value of the target para-

meters be denoted TK. The (K+l)th iterate value of the control parameters

is then formally given by

. a - 3T :
apil T % + £t TR 36 K ] ‘ (8.4-14)

where the details of this targeting is given in Chapter 1ll. The zero
iterate needed to start the process may be computed from the standard
launch profile described in Section 8.2, The sensitivity matrix may

be computed by numerical differencing or the analytic equations given

in the state transition matrix computations provided in Chapter 6.

It would be desirable to extend the targeting and optimization process
through a second maneuver at injection into a third orbit. This would
then allow the automated and integrated targeting of the parking, trans-
fer and target orbits for preflight analysis.
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8.5 Launch Phase Error Analysis

The preflight error analysis of the launch phase is generally
performed by the launch vehicle personnel up to and including the in-
jection maneuver. The results of this analysis is an injection covari-
ance which defines the errors at the injection point based on errors in
the boost maneuver, the parking orbit and the injection maneuver itself.
GMAS mus: be able to accept such an injection covariance and propagate
it along the transfer orbit to the injection point for the inclusion of
the insertion maneuver errors. This, however, is the purrose of the
maneuver error analysis addressed in Chapter 13. It is necessary to
transform the injection covariance from any of the injection peculiar
coordinate systems to a standard system for the use by the linear or

Monte Carlo analyses.
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9. MANEUVER MODELING

9.1 Introduction

The next three chapters consider d?rectly a primary problem
address=d by GMAS: maneuver analysis. This chapter dilcusses the
general mathematical modeling of maneuvers. Chapter 10 addresses
the deterministic targeting of impulsive maneuvers. Chapter 1l
considers the refinement of maneuvers‘by numerical techniques to
permit more detailed implementation models, targetinyg of more
complicated mansuvers or sequences, or optimization of maneuvers

when possible,

As stated, this chapter is intended to provide the mathemat-
ical models used in general maneuver analysis. Section 9.2 defines
thé mathematical models available for maneuver simulation. Section
9.3 addresses the modeling of vehicle attitude at maneuvers. Sec-

tion 9.4 discusses the propulsion system characteristics.

The consideration of maneuver command generation and proces-
sing in the operational Flight Dynamics System was veyond the scope
of this effort but would be considered for possible inclusion as a

separate chapter in GMAS at some later date.
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9.2 Maneuver Simulation

Three options for simulating burn maneuvers will provide the
user with the capability to simulate a given maneuver with threc

levels of accuracy. The three options are described as follows:

1) Impulsive delta velocity maneuver,
2) Analytical finite burn maneuver,
3) Numerically integrated finite burn maneuver.

Each option will be selected by user input.

The equations for these models and the underlying assumptions

for each model will now be described.
9.2,1 Impulsive Delta Velocity Maneuver

This frequently-used model (Ref. 9-1) will instantaneously
apply a delta irertial velocity in the direction of the positive
roll axis of the vehicle. The vehicle roll axis orientation and
delta velocity can be user specified or internally calculated to
produce a specified maneuver, i.e., plane change apogee raising,

etc. The equations for this model are

X2 =L} (9.2-1)
. avl ,
v, =¥ + [18] 0 (9.2-2)
0

where:
ry 1is the final radius vector
r is the initial radius vector
\' is the inertial velocity vector after the
impulsive maneuver
V, is the inertial velocity vector before the
impulsive maneuver
AV is the delta velocity magnitude, and
[IB] is the transformation from the geocentric
inertial system to the vehicle body coor-

dinate system,
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9.2.2 Analytical Finite Burn Maneuver

This model (Ref. 9-2) will propagate the vehicle state

vector through a burn maneuver by analytically solving the equations

of motion under certain simplifying assumptions.

are:

These assumptions

a) Constant vehicle attitude during the burn maneuver,

b) Constant thrust and flowrate during the burn maneuver,

¢) Spherical planet model with constant gravity during

the burn maneuver.

The equations of motion for these conditions are given by

ar =

..“l

713

1 + [IB]-l ';%/'I\‘

(9.2-3)

The acceieration vector is integrated to yield the velocity

vector after thke burn maneuver

Vv,=Yy, -

HY1 At -1 1A, [m tfa
EXI (] = Tfn v (9.2-4)

The velocity vector is integrated to yield the radius

vector after the burn maneuver

Yo=Y

where:

e

my

At
A
T

9.2.3 Numerically Integrated Finite Burn Maneuver

1

+V, at-

is
is
is
is
is

is

" is

the
the
the
the
the
the
the

nYat2 A
—— T

2

+[IB]-l it

B3

2'71 mAt
acceleration vector

thrust magnitude

current vehicle mass

vehicle mass rate of change

my

m,L+z;1.\tD ml-!-n'i_\t
5 +n -1] (9.2-5)

vehicle mass before the burn maneuver

maneuver burn time

unit thrust vector in the body system

This model (Ref. 9-3) will simulate the burn maneuver by

numerically integrating the burn. The thrust and

model are user specified as time history tables.

flowrate for this

The thrust vector

is assumed to be coincident with the vehicle roll axis, with the
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vehicle roll axis being oriented via user input or by the target-
ing algorithm based on user input. The equations of motion for this
model are given by

- -1 T(t) 2

where:
ag is the gravity acceleration
T(t) is the current table look-up value of thrust
Tft) is the current table look-up value of mass flowrate

T is the unit thrust vector in the body system
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9.3 Attitude Modeling
9.3.1 Introduction

Attitude modeling plays a critical role in maneuver analysis
and design. The vehicle has a nominal attitude (for example, in-
ertially fixed or local vertical) during periods of cruise. It gen-
erally must be reoriented prior to each maneuver to align the
engines in the direction of the desired burn. Following the maneu-

ver the vehicle is generally reoriented to its cruise attitude.

The detailed analysis of attitude maneuvers and the attitude
control system are not the responsibility of the GMAS; six-degree-
of -freedom analyses at this time are groundruled out of the study.
However much instructive information defining the size and direc-

tion of attitule maneuvers can be computed from analytic equations.

There are two approaches possible in attitude maneuver model-
ing. The standard approach as used in a program such as POST (Ref.
9-4) develops a general targeting structure that includes attitude
system parameters directly as control parameters within the traget-
ing process. This is an extremely effective means of simulating
a wide variety of steering laws and simulation models. Such an
approach permits convenient simulation and targeting of maneuvers
in which thrusting occurs during attitude maneuvers. This capabil-
ity may eventually be necessary for shuttle era missions which

require repeated satellite transfers to shuttle-accessible orbits.

The significant orbital maneuvers might occur cver long
enough time intervals to require vehicle pitching during the thrust-

ing to reduce velocity losses,

The approach used in this section addresses the problem some-
what differently. It assumes that the thrust direction has been
computed by some means (analytic targeting, parametric scan, numer-
ical targeting) and the cruise attitude is known (input). The
approach then computes the Euler angles, angle rates or body rates

and the attitude behavior during the orientation mancuvers. The
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computations can then be performed in an independent module to the
standard maneuver analysis and available on request. The formula-
tion still allows the reader to see the computational flow for the

more standard POST approach by reversing the computations and pro-

ceding from the attitude control parameters to the definition of the

AV direction.

The attitude of the spacecraft is conventionally specified
in terms of an appropriate set of Euler angles. Distinct combin-
ations of such Euler angles best simulate various attitude refer-
ence systems. The difference between these various Euler angle
combinations are the initial reference frame and the ordered sc-
quence of rotations. A good range of attitude modeling capability

is represented by the following attitude models:

1) Inertial Euler angles
2) Relative Euler angles
3) Velocity relative angles

4) Vehicle body rates

These models are discussed in the following subsections.
9.3.2 Inertial Euler Angles

The inertial system is most convenient when considering
spacecraft employing inertial reference systems. The ordered iner-
tial Euler angles with respect to the inertial attitude reference

frame are defined below:

SPACECRAFT

¢; - Inertial roll angle. The
roll angle about the iner-
XB tial x-axis (lst rotation).

61 y1 - Inertial yaw angle, The yaw

. angle about the z-axis that

1 YB resulted from the ¢y rota-
V1 tion (2nd rotation).

6 - Inertial pitch angle. The
pitch angle about the y-axis

Figure 9.3-1 that resulted from the ¢; &

Inertial Euler Angles Y1 rotations (3rd rotation).
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Denote the unit vectors defining the inertial reference frame by
(xR, YR» 2R) and those defining the desired maneuver direction by
(xg> ¥YB» zg) with reference to the geocentric inertial coordinates.

Then the angles ¢y1, ¥1, and 6y are defined by

$1 = tan”L(RBy3/RBy))
-1
¢1 = -sin “(RBy}) (9.3-1)
by = tan-l(RB3l/RBll)
where [RB] is the matrix defining the rotation from the reference
frame to the body frame computed from
- ~ =T
Xg | xlﬂ
RB = {vg| |¥g (9.3-2)
e = - - e
“s] [*r]

9.3.3 Relative Euler Angles

The relative system is most convenient when analyzing vehicles
using local horizontal reference systems. The relative Euler angles

with respect to the geographic frame are given by:

X Yy, - Relative yaw angle. The axi-
B R .
muth angle of xg axis measured
6 clockwise from the reference
Xg wR R ‘ direction (lst rotation).

g, - Relative pitch angle. The

R
elevation angle of xp axis
above the local horizon frame
(2nd rotation).

= ﬂz&zzs i ¢ - Relative roll aagle. The roll

Vg angle about the xp axis (3rd
rotation).

Figure 9,3-2 Relative Euler Angle

The geographi:. frame is defined with respect to the inertial geo-
centric system by (XG, Yg» ZG) where X; is in the local horizontal
plane and points north, the Y axis is in the local horizontal plane

and points east and Zg completes the right hand systeu.
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Then the angles (¥R, 6OR. ¢R) are defined as

gg = tan 1(GB12/GBy)) |
-sin"1(GB}3) (9.3-3)
tan"1(GB,3/GB33)

0r
R

where [GB] is the matrix defining the rotation from the geographic

frame to the body frame defined by

Xp Xg
[eB] = |¥ g (9.3-4)
ZB ZG

where (Xg, Yg» Zg) are the unit vectors defining the geographic

axes relative to the inertial system.
9.3.4 Velocity Relative Angles

The velocity relative system is useful in developing intui-
tion about the geometry of the required maneuvers. The Euler angles

in this system are computed from:

o. - Velocity relative roll angle.
L This angle is a rotation about
the inertial velocity vector
€ - (1lst rotation).

*B B, - Out of plane yé&w angle. This
o I . s .
1 angle is a negative rotation
about the intermediate z-axis
resulting from the roll angle
1 (2nd rotation),

5 NG
N
=

Velocity relative pitch angle.
This angle is a positive rota-
tion (nose-up) when the vehi-
Figure 9.3-3 cle is in an upright attitude
Velocity Relative Angles (3rd rotation).

j<
-
-]
-
1

These angles amy be computed from
= -1
@ = tan (VIXB/VIZB)
= -1 2 2
B = tan " (Vyuh/Vigg + Viyp) (9.3-5)

- tan-l GByq + sinf sinvg
GByocos AZI°GBZISi“ AZICOS7I




where [GBj is the matrix transformation from the geographic frame
to the body frame, Vyp is the inertial velocity in the body frame,
and Azy and ¥y are the inertial velocity azimuth and flight path

angle,
9.3.5 Angle Rates

The actual reorientation of the spacecraft attitude from
the initial to the final orientation can be modeled by an appro-
priate set of piecewise linear attitude polynomials. In this type
of model the attitude rates are computed to satisfy the desired

change in each attitude angle.

The calculation of the attitude rates (§, é, $) required to
change the attitude from the initial orientation (y;, 0i» ¢i) to
the desired orientation (¢y¢, ff, ¢¢) in the (input) time periods
(At¢, Aty, At¢) are given by

7R . O - 6 . dg - 4
S SIS S R S § =L _ 1

Aty ig Atg

The attitude during the maneuver is then computed as indicated in

(9.3-6)

Figure 9-4 and equations (9-13).

¢i
o .- ¥i +¥(t-ty) i< t< tiHaty
¥, oty ti+at
= b t iT=by
& ]
E g; +0(t-ty) @ t; < t < tyrarg (9.3-7)
0:
< 91 ¢'f of : t )ti+At0
i é; + d(t-t;) : t;< t< t;*+atg,
{c#f Tty > titaty
At,l, .
Ata
Atg

Figure 9.3-4. Linear
Attitude Reorientation Model
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9.3.6 Vehicle Body Rates

Any of the above-described Eu

in terms of equivalent body rates.

_—
el

w

Figure 9.3-5,

Body Rates

These rates may be computed from eac

systems as follows:

Inertial Euler Angle Rates:

Relative Euler Angle Rates:

where[GB] is the transformation mat

p— 1 -‘; _ . -
Wy ¢Icos¢IcosoI ¢151n61
wy = 91 - ¢181nv1

L] . + .
w, ¢Icos¢Ism(9I \bIcosoI

L. J L -

ler rotations may be described

These rates are defined as

- Roll body rate. The angula
rate about th2 xg-axis in
deg/sec.

- Pitch body rate. The angu-
lar rate about the ypg-axis
in deg/sec.

- Yaw body rate, The angular
rate about the zg-axis in
deg/sec.

h of the referenced angular

wy $p = ¥gsindy 1 v/r W

wy = chos¢R + ¢Rsin¢RcosaR + [GB] -u/r

. . .2 N ) -;_V_

, ¢Rcos¢RcosoR 9Rsm¢~R i T tan ¢, 1
L - . - -

rix between the geographic and

the body frame; u and v are the north and east compeonents of the

T

(9.3-8)

(9.3-9)

inertial velocity vector; r is the current geocentric radius vector

to the vehicle; and ¢, is the current geocentric latitude of the

vehicle,
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. Velocity Reietive Angles:
-w; a; +dyo + (sina) g
wg | =| 2y +dge +° 5 (9.3-10)
wy 33 + d3& + (COSG) é
where -
vi= |_IGl!I, (9.3-11)
LU
al v/ity - 'I.’I Sian _1
a = E;B] '-ufrI + YI cosry (9.3-12)
v tan¢ .
— T
Lé3 r; 1
dIT cosvrI c057I
: d2 = E;B] sin.-.-I cosy; (9.3-13)
d -siny
3_ N I
o= (v - ve) /(ud + vE) (9.3-14)
Y = (-V.,u v N2 .2
'y (-Vqe + wVI) /vy Vi w

Having computed the body rates the attitude kinematics during the

orientation maneuver may be computed. Define the quaternion as

q=eyte i+epj+ e3k = (ep, e}, ey, e3) (9.3-15)
The quaternion rate equation is given by
A
49=5Qe (9.3-16)
where
1 %2 %3
Q= €0 €, "e4 (9.3-17)

eo -el e3

'_ | %0 1 %2
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The initial value of g for (9.3-16) is given by

90 = 9 (¢p* gy > a(d)) (9.3-18)
where ) $1 e
9(¢I) = cos ;E + sin — i
a(¢ ) = cos —% + sin j% k ' (9.3-19)
- 91 o1 .
3(01) = cos =3 + sin =5 j

The solution to (9,3-16) through 9.3-19) then yields the instantaneous

orientation of the body reference frame with respect to the inertial

frame:
— -
e02+e12-e22-e32 2(e1e2+e0e3) 2(e1e3-e0e2)
Eqa>= 2(e ep-egey) ‘eoz-e12+e22-e32 2(e0e1+e2e3) (9.3-20)
2(e1e3+e0e2) 2(e2e3-eoe1) e02'e12'e22+e3ij

9.3.7 Translational Effects of Attitude Maneuvers

The effect of the Attitude Control System (ACS) maneuvers on
the vehicle state vector can be estimated in point mass trajectory
simulations by including a translational delta velocity per maneu-
ver along each axis in the vehicle body system., The c3lculation of
the amount of translational delta velocity along each axis requires
the use of a program which can simulate the maneuver in six cegrees-
of-freedom. Once the translational delta velocity values are known,
these delta velocities can be added along each vehicle axes at the
time of each orientation maneuver. This procedure requires that the
trajectory be interrupted the time of each orientatior maneuver in

order to add the estimated delta velocities due to the maneuver.

The translational delta velocities are a function of the net
thrust along each axis and the amount of time each thruster is on

during a maneuver, and the orientation of the vehicle before and

after the maneuver.
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Neglecting thruster misalignment angles, the relationships
between the type of thruster and the delta velocity direction

would be as follows:

THRUSTER TYPE AV DIRECTION ALONG

ROLL ’ VEHICLE PITCH AND/OR YAW AXES
PITCH VEHICLE ROLL AXIS

YAW VEHICLE ROLL AXIS

Civen the initial vehicle orientation, final orientation,
the time required to reorient, and the net thrust fox each type of.
thruster over the reorientation time, the translational accelera-

tion can be approximated by

1 Iyrp * Thry
a; =3+ l-_IB]' m |INER (9.3-21)
TNy

where:

Tyrp 1is the net thrust aloﬁg the roll axis due to-
.a pitch maneuver

Tyry 1s the net thrust along the roll axis due to
a yaw maneuver

Typp 1is the net thrust along the pitch axis due to
a roll maneuver

Tyyr 1s the net thrust along the yaw axis due to

a roll maneuver

The reorientation maneuver would then be simulated by
specifying the start and end times of the maneuver, the initial
and final vehicle orientation angles and the appropriate net thrust
values for the maneuver. The maneuver would then be numerically
integrated to obtain the approximate translational effect of the

reorientation maneuver.
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9.4 Propulsion System Modeling

The problem of monitoring vehicle center of gravity shifts due
to propellant usage in certain tanks requires knowledge of the
spacecraft geonetry and propulsion characteristics. The number,
location and orientation of tanks must be defined as well as the
center of gravity shift versus propellant usage. In certain sys-
tems, half of the tanks are inverted to produce cancelling center
of gravity shifts. If the tanks are the pressurized, diaphram type,
then the center of gravity shift in the tank can be assumed to be
along the centerline of the tank, If the propulsion system is a
blow-down type system, the tank pressure is a function of the gas

volume in the tank.

9.4,1 Thrust Modeling

One method of modelling such a system is the orvit adjust
propulsion subsystem QAPS (Ref. 9-3). The following znalysis is

taken from that reference.

The rate of change in gas volume Vg and gas pressure PG are

given by the ideal gas low as follows

. F
Vg = 7 goISP (9.4-1)
. ¢ __F
P = -k —=2 ==t
) (9.4-2)
G VG gOISP

where
is the propellant density
k 1is the ratio of specific heats for the pressurant gas
P; is the gas pressure

Vg is the gas volume

The propellant density can be described as a polynomial function of
propellant temperature by
3 :
~ i-1
P= 3 di Tp (9.4-3)
i=1

where di is the ith coefficient of the polynomial
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Tp is the propellant temperature in degrees Rankine

The thrust (F) and specific impulse (Igp) are given as poly-

nomial functions of propellant pressure (Pp)

5

F=3 ajPpi (9.6-4)
i=1
5
Igp = ;il Ci Ppl-l (9.4-5)
where
a; are the thrust polynomial coefficients

Ci are the specific impulse polynomial coefficients

the propellant pressure in the thrust chamber is computed as

Pp = (1 - 8Py)(Pg - 8Pp) (9.4-6)
where
SPV is a percentage pressure crop due tu valves in the

propellant line between the tank ana the thrust

chamber

8Fp 1is the pressure difference across the tank diaphram,

The pressure difference 8Pp is given as a constant or as a
polynomial function of propellant mass depending on the percentage

of propellant usage as

8Pp = é Cc;(1 - h‘3'122") o | (9.4-7)
i=1 Mpmg

where

Ci are polynomial coefficients which are a function
of AMP

Mp, 1s the current propellant mass in the nth tank

Mpqo is the initial propellant mass in the nth tank

The acceleration due to the orbit adjust propulsion subsys-
tem is given by
A
F

-a_=

1o}

(9.4-8)

9.4-2




where
M is the total spacecraft mass
9 is the unit vector defining the thrust axis in the

vehicle body system.
9.4.2 Mass Properties Modeling

The center of mass of the spacecraft is calculated bascd on
the summation of the individual centers of mass of each tank and

the spacecraft with no propellant as follows (Ref. 9-5):

6
iil MPWQU Mg
C~—w *w % (9.4-9)
where ,
. MPU is the propellant mass in the nth tank

My is the spacecraft weight with no propellant
M is the current total mass of the spacecraft
go is the spacecraft center of mass with no

propellant

The individual tank center of mass is assumed tou lie on the
tank centerline. The tank centerline orientation with respect to

the body axis is given by the tank mounting angles 8, and «

The individual tank center of mass is then given by
COS{_-CcOSa
n n
C, = gno + CLn cosd, sinnn (9.4-10)
siny
where
gno is the origin of the tank coordinate system in
vehicle body coordinates

CL, 1is the tank center of mass in the tank coordin-

ates

The tank mounting angles are illustrated as follows

9.4-3



3 TANK
CENTERLINE

Given the composite center of mass of the spacecraft as a
function of the propellant used in each tank, center of mass con-
trol logic can be implemented. This implementation consists of
investigating the center of mass shift of the spacecraft assuming
each tank is to be used for the maneuver in turn. The center of
mass is then controlled by selecting the tank for the maneuver which
minimizes the center of mass shift. The tank selection logic also
has certain back-up options; For example, if more than one tank
would satisfy the center of mass shift requirements, the tank with
the most propellant is selected. 1f no tanks satisfy the require-
ment, the tank which minimizes the center of mass shift is selected.
Tanks that havé depleted all of their propellant or tanks that have

valve failures are not considered for a given maneuver.

9.4.4
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10. ANALYTIC TARGETING

10.1 Introduction

Analytic targeting refers to the computation of closed-form
solutions for maneuvers satisfying desired orbital changes using an
impulsive approximation for the maneuver itself. The closed form sol-
ution thereby generated yeilds a simple and reliable approximation for
most orbital maneuvers. As a result, impulsive modeling has received
widespread application in preflight mission planning as well as real-
time mission support. In thise applications, the impulsive models are
typically used to provide rapid estimates of maneuver parametrics.
They also furnish effective initial iterates for parametric scan or

numerical targeting and optimization for more detailed simulation of

the maneuver.

Orbital maneuvers are conveniently categorized into two classes
of maneuvers. Orbit change maneuvers will refer to programmed or sche-
duled orbit changes such as orbit insertion, orbit transfer, or routine
plane change maneuvers. Orbitkeeping maneuvers will refer to maneuvers
required to maintain some orbital characteristic in the presence of
pérturbations. Orbitkeepiﬁg maneuvers include such maneuvers as syn-

chronous or sun-synchronous orbit stationkeeping.

This chapter describes the analytic targeting of both kinds of
orbital maneuvers. A section is devoted to each specifié maneuver
within the two general classes so that later additioms, deletions, or
modifications to this chapter may be easily implemented. A listing of

these maneuvers is provided below:

Orbit Change Maneuvers
(10.2) In‘ection frcm Parking Orbit
(10.3) Insertion from Transfer Orbit (Apogee Maneuver)
(10.4) Station Acquisition
(10.5) Single Impulse Plane Change
(10.6) Two Impulse Plane Change
(10.7) Fixad Location In-Plane Maneuvers

(10.8) Variable Location In-Plafie Maneuvers

10.1-1



Orbitkeeping Maneuvers
(10.9) Orbit Trims
(10.10) Synchronous Stationkeeping '
(10.11) Sun-Synchronous Stationkeeping
(10,12) Perigee Altitude Maintenance

Two coordinate systems will be used repeatedly in this chapter.
These coordinate systems were described in detail in Section 5.2.5.

Both are based on the satellite orbit plane.

The Xop-Ygp-Zop frame will be denoted by its briefer and more
descriptive title, the RIN system where
is directed along the satellite position vector (Xop)
is directed in the orbit plane normal to R (Ypg)-
is defined by r x i (Zop)

1=z 1= 1>

The second frame is the Xp-Yp-Zp which for simplicity will be
called the PQN frame where
is directed toward perigee (Xp)

is in the orbit plane normal to P (YP)

=z w v

is defined by r x i (Zp

These frames are illustrated in Figure 10.1-1 below.

Q(¥p)

R(Xgp)

\\\\~\_§L_ﬂ,4r/fhe N-axis (=Zgp =Zp) is out
' of page toward viewer.

Figure 10.1-1, Description of RTN
and PQN Frames
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10.2 Injection from Parking Orbit

The injection from the parking orbit to the target or transfer
orbit is discussed in detail in Chapter 8 because this maneuver is
intimately tied to the launch phase of the mission. AGenerally the
launch time and azimuth is selected on the basis of optimizing.the
transfer orbit injection and target orbit insertion. Apparentiy the
operationdl targeting and implementation of this maneuver is not the
responsibility of the Mission Support Computing and Analysis Division.
For completeness however the impulsive targeting of this maneuver will

be briefly summarized here.

The parking oxbit is characterized by the inclination ip, the |
longitude of the ascending mode Q) and the circular radius Rp. De-
fine the radius vector to the desired transfer orbit apogée by Ra.

It is assumed that the launch analysis phase has selected the launch
time and azimuth to insure that R, lies in the parking nrbit plane.
Then the argument of the latitude of the injection point (angle in the
parking orbit from the ascending node to the injection point) is given

by

A
cOS UI = <L BA/RA
sin Uy =(-L x Ry)- N/Ry
A
where N = (sin Q sin ip, -cos Qp sin ip, cos ip)

\ A (10.2-2)
L = (cos Qp, sin ﬂp, 0

K]

-

- H '
The 4V is given by

- ’m A A
: o=\ -1]Q (10.2-3)
- N y RP R A + RP

where Q is defined by Figure 10.1-1.
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10.3 Apogee Maneuver

The analysis of the apogee maneuver has been the subjz2ct of much
repeated effort at GSFC. Programs for the analysis of the targeting
of this maneuver have included FUSIT2, FUSITS, and FUS1T6 (Reference
10.3-1), FUSLIT7 (Reference 10.3-2), RAEMOT (Reference 10.3-1) and
CAMPO1l (Reference 10.3-3). Currently, investigations are underway for
the CTS (Reference 10.3-4) and it may be necessary to upcdate this sec-

tion when those analyses are completed.

The mathematical description of the apogee maneuver cargeting
problem is as follows. The elements of the transfer orbit are known
;nd designated by (ap, ey, ir, Qp, wp). The elements of the desired
near-synchronous orbit are given as (ag, eg, ig, Qg, OS). The solid
rocket motor has a fixed AV capability denoted as AVy. The problem is
to determine the AV diréction U so that when the engine is fired the

resulting orbit is acceptable and as close to the desired orbit as pos-

sible.

Acceptability in this context is a somewhat vague term as it may
mean some complicated combination of constraints ‘ncluding drift time,
observability by certain stations at certain times, éhadowing, etc.

Thus the actual targeting of the apogee maneuver will undoubtedly in-
volve some post-analytic targeting refinement by either the pa}ametric
scan or optimization modules. Therefore the approach described below
should generate an acceptable solution but need not consider all the
constraints involved in those later refinements. The appruach discussed
was suggested by the approach taken by Novak of Reference 10,3-4 bhut
differs substantially from the solution. Figure 10.3-1, taken from Ref-

erence 10.3-4, is an extremely effective illustration of the apogee

maneuver problem.

The algoritlm presented below determines in closed form the direc-

tion of the solid rocket motor burn to

S

(1) Acquire the desired plane and drift rate and minimize

-

eccentricity error.

2
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(2) 1f (1) is not possible, acquire the desired plane and min-

imize drift rate error.
(3) 1If (2) is not possible, minimize the plane error.

The input therefore is the desired drift orbit inclination i, longitude
of ascending node @, semimajor axis a and eccentricity e; the solid
rocket motor fixed capability aV; and the transfer orbit defined by a

position r, and velocfty V. The output is the optimal burn direction

LN'S
The transferlcrbit is defined by'computing the angular momentum

and eccentricity vectors
H =1 x !t (10.3-1)
[ e = ﬁ_gt/rt -H x gt/# i (10.3-2)
The normal to the desired drift orbit plane is given by

n = (sini sin@, -sini cos), cosi) (10.3-3)

The line of relative modes between the transfer plane and che drift

orbit plane is given by

U =H, x /|8 x n| (10.3-4)
Then the radius at the intersection point is
He .
‘ r =TTy (10.3-5)

The velocity vector on the transfer orbit at the intersection point
is :

, B
\'A -(ﬁ't?.) H x (g, +1) (10.3-6)

The RIN system is established in the initial orbit plane with the
R axis coincideni\with the Uy axis.,

R=U

L ;t (10.3-7)
A A A e
T=NxR

! The transformation from the inertial to the RTIN frame is then

-~

given by
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Figure 10.3-1. Illustration of Apogee Maneuver Burr Geometry

N
~N
A
T
e ]
=\
A
v° A T
N
=
NOTE: RT plane is desired
drift orbit plane.
A
R(X)

Figure 10.3-2, Construction of RIN System for Prwblem

! Tﬂ‘

=>

Figure 10.3-3. Velocity Parameters in RT Plane

-~
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(10.3-8)

The out-of-plane component of the velocity vector at the injec-
tion point is given by
A
N

W=Y" (10.3-9)

The first logical branch point depends on the relative size of Vy and
v. 1If |vn|>» AV the sphere of possible velocities following the
solid rocket motor burn does not intersect the desired orbit plane.
In this case the AV direction should be directed toward the plane to

minimize the planar error. Mathematically

1 avg|wl| ! (10.3-10)
, A ‘
gAv = (-sign Vy) N (10.3-11)
If aVD> lVN |the sphere does intersect the desired plane in a circle
(Figure 10.3-3). The radius of that circle is given by
2 ot
AVRT = (aV4 - V) > 0 (10.3-12)

Denote the length of the projection of V in the RT plane by
VRT, and its polar angle by 6, whqre

VRt = (VR2 + Vrz)k (10.3-13)
)
cosf, = VR sinoo = Vp
l Then the equation of the circle defining possible drift orbit
Yelocities lying in the desired plane is given by (r,§) where
2 - - 2 - 2 = -
r 2r Vgr cos(d ao)+(vRT ‘WRI) 0 (10.3-14)

Now the desired velocity magnitude can be comput2d from the

desired semimajor axis (equivalently, the drift rate) from the energy
ﬁ -
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equation X
vk =[,;(—i— - %)] ' (10.3-15)

The intersection of the circle r = V¥ with the desired plane
circle (10.3-14) then defines velocity orientations that acquire both

the desired plane and drift rate.

1f there are single or no intersections, the velocity directions
in the RT frame are given as follows

N | -
Ver > A V& D Vpp +'aVpy 0= 4,
V*< VRT ‘-AVRT 0= 60 )
(10,3-16)
avx  Vgr = Ve 6= g, + 180°
i
Then the optimal AV direction is given by
T
where
AVRT cosé
, AVRTN = | AVpp siné (10,3-18)
(av2-vh*

1f the conditions (10.3-16) are not satisfied there are two solu-
tions which acquire the proper plane and the correct drift rate. In

this case the solution is chosen which minimizes the eccentricity error.
¥

The two solutions of the simultaneous equations t = V¥ (10.3-15)
and (10.,3-14) can be written as
w2 - 20k Vg cos(d -8g)H V2 - AVap) = O (10.3-19)

Solving for the values of ¢,

2
HVE -s
§ =06, +cosl E R ] (10.3-20)

zvRT .

Then \cos(o 00)\< 1 since the exclusion of conditions (10.3-16) requires
t

|Var - AVgp| < V¥ < Vgp + aVgq (10.3-21)

Then the ambiguity in sign may be resolved by selecting the solution

1
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that lies closest to the desired eccentricity. Note that § represents
the complement of the flight path angle at r. The desired flight path
angle is a function of the desired eccentricity by the relation

Y= cos”} (phallze ), (10.3-22)

rv
RT
Thus the sign of (10.3-20) is selected to minimize the error’?-ol.
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10.5 Plane Change

The plane change maneuver described below involves simply a
plane change so that no other elements but inclination i and longitude
of ascending node are affected. The analysis of a single maneuver
that obtains a plane change and affegts other elements can be made by
computing the plane change impulse AVp and the subsequent in-plane
impulse 521 (see next section) and adding them together.

Let the elements of the initial orbit be denoted (aj,ey,11,Qr,
wy) and the desired planar orientation by (if,Qf). The normals to
the two planes are then given'by

. A
Nj = (sin@y sinij, -cosQ; sinij, cosij) (10.5-1)
A
N¢ = (sinfg sinif, -cosQ¢ sinig, cosif) (10.5-2)

Define the line of relative nodes by
A A A Ay A
L = =Ny x Np/|§; x Ne | (10.5-3)

where the sign is chosen to force L > 0. If L, = 0 as ccmputed from

A
(10.5-3), then L is set equal to
A
L = (cosQ;, singy, 0) (10.5-4)

The true anomaly cf the first intersection point (there zre obviously

two points of intersection) on the initial orbit is given by

N A
cosfl =P L o
A A 0 \<f1 < 360 (10.5-5)
, sinf; =Q * L

A
where P and 6 are computed from the elements of the initial orbit as

discussed in Section 10.1.

The RIN system is established in the initial orbital plane with
the R axis coincident with the L-axis:

10-5.6
N ( )
R

> ZD> m>
]
Zz> ZD> D>

X

The initial velocity in the RIN system is given by

-
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‘ !Ii{TN (vy sinY, vj cos 7,‘0) (10.5-7)

where
r; = ﬁ%;%?l- | (10.5-8)
vi = Vw2l -a]) (10.5-9)
y, = tan”} (EZZ’T‘:g) (10.5-10)

|
The final velocity in the RIN system is then

i N (10.5-11)
where _
' 1 0 0
d’R = |0 cosyj -sinyj (10.5-12)
0 sinj; cosdj

and where as indicated by Figure 10.5-1 the following conditions are

imposed v
= = = I
Ai = kg = ii il (Vi)z > 0
1 (10.5-13)
=1i; - 1ig if (vi)z <0
Figure 10.5-1, Geometry for First Solution
The velocity increment in the RIN frame is then
RTN RTN RIN RTN
Av TV oty ¢ (¢R =Dy (10.5-14)
This may be simplified to yield
; 0
‘ T 2y, cos v (cosag-1) (10.5-15)

vi sin 7 sinyj
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. The inertial velocity increment is then given by

1 _.T _RIN |
AV =Py X (10.5-16)

'The second sciution which occurs in the southern hewisphere is
A
determined by reversing the sign of L in (10.5-4). The true anomaly

of the intersection point is given by
£, = £, +180° (10.5-17)
The computation of the 4av for this solution then proceeds as

above.

Figure 10.5-2. Geometry of Second Solution
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10.6 Two-Impulse Plane Change

The MAESTRO program development (Reference 10.6-1) identified an excel-
lent technique for the closed-form optimal solution to the two-impulse 180o
nonplanar transfer. This capability, originally derived by T. Sun (Reference
10.6-2) should be available in the GMAS. Sun's method determines the optimal
two impulse 180° transfer between non-coplanar orbits. Since a 180° transfer
is specified, the first impulse must be applied at the intercection of the
initial and final orbit planes. Thus, the angle between the initial and final
orbit planes and the position on the initial orbit where the maneuver is made
can be obtained from the spherical trigometric relationships, See Figure below.

The following development is taken directly from Reference 10.6-1.
7

_—

&

The angle from the reference plane to the common line of nodes in the initial
orbit, A , can be determined from the input initial true anamoly, f, and the
argument of the ascending node of the initial orbit as,

A= £+ =~ (10.6-1)
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Then, Uic . b2 detaeen the two orbit planes, ¢ , canbe Jotermingd from,

d (10.6-2)

whkere i is the inclination
‘ !
3 is the angle from the peference plane to the conomen line of
rodes in the final orbit plane,

e tae sebeceipts i and dvefer to the init) ond dovired ovbils,
raspcctively,

fhe radius wed selecity componenis can be detorminad from cinaderd orbital

relationships at the initial true asomaly, f.

Nhe srientiiics of the tvensfor plane with respect to fhy inttinl sad Gt oriit

Splaves is deseriboa i ihe finure below:

initial

transfor

Y e {inal

T4 YO8 anned RN 30 ati " ol
Toe angles wy ande, doscribe the orientation of the traasicr plane wito vespect (o

tn’e initial and final orhit planes, vespectively,

I TR AF 1 vy - . .5 Yoy
I the inclintion of tie transfers plane with respect to the inidsl plare s specified
e . vy LA TR S [

W | My W IR . N .
then the endi nal veiceity can now be determined using Sun's equation 10,

Y 2 By ‘

/2 2.1/2 (10.6-3)
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The scecend Leim is defermined in a similav manner as

AV = v -

v
2 R2 RT2
a.\’»’i,z = —\’,1_2 sin w,
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In the whove o awoddoos ke compononts of velacity ave defived a3 {ollows,

radizl comvonent of velocity of the

initial ov final ovbil. '

v Trensversal component of veloeity of tie diial or
fleo0 orbity {aothe initial ov tinal ovhit plane,

v e nace ranl component of velocity ol the faitial ov

Dol orbic written ia the transfer plane.

tacial component of veloeity of the trans for orbil at

Vi o
R1L,2 . v e . ;
feireal and final uebit erossings.

All componcnts e veieciny eveept the radial components of tha trars=fer orhil in
_eqns (10.6-6 and 7) are fixed by specifying the initial and final orbits. The

radial component of velocity is determined from the condition that the total

trim velocity is to be minimized. The total trim velocity is

{

: 2 2 2
M s AV = 3'\V + ' +(V - .6-
AV AV AV, AV TAVy (Viory = Vil (10.6-8)

2 o 2

, . - ’ - ’
-t c"""\\"l'z 4 A\ N (\ - -\

(10.6-9)

cince a 130° transiev is speeilied and the final orhit is to o circular. Now, the

partizl derivative ol the trim vielneity with respect to Vr'{’l can Le wrillen as,

14 -
A Vi 2V o Yemr o o
aVl"ll AVI sz

V - !\ \y') ‘:‘.]'J_ (10.6'10)
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Tha cooopes ete of the teim veloeity obtained {rom eqns (10.6-6, 7, & 10) describe
the tod velocity with respecet to the trangicr plaue. Tae teba velocily vector in

the s eosvdinate systom of the initial ocbit is oltained dieoush o theee Euler

angle cotatioa pietuved in the fisure below,

i ad \'

In the fizuve albove, x corresponds to the radial diveetion, v to the transvevsal
Ciecciien and < to the normal diveetion,
The ansalav elemuents of the reference orhit define the Foalor anples, Taas the

{rancformation feoie the X, ¥y, # svystem to the X, Y, o0 oy stemoy

< - cos ens Q) -siny cos ) “iaisin ) A <
- -cos § vin Osing -cos i sinflcos ¥ ‘
Syl o et n _‘.' ) +1 ) _:-.‘, 3 ‘O ]
N siny sin inicos (y) (10.6-11)
\ tens teos Osiny teos 1 cos Qceos Y ‘
Zi l. sinicosy sin i siny cos i B 4
wiere)) = {+w -

The above cquation is used to transform the trim velocity componeals from an orbit

plane coordinate gystem to the system of the reference orbit.

Optimum Inclinetion of the Traaster Plane

The condition for the optimal orientation of the transier plans is expressed by

2 4
-20, ¢ T4 1/2
sin wo 1-2 e oy 4Py

= N -
. . V 2
San—l 1- .’pl (NS "L +P1

© 10.6-5
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‘_":e - /’ . l
‘ where /’1 = _Nl_i}_'gl\ —
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shersome 1o of «hving w sistiv order cqualion, A Newton=Timoa nrocedure
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10,7 Fixed Location In-Plane Maneuvers

Fixed location maneuvers refer to maneuvers that are performed
at a specific point within the initial orbit. Such maneuvers as peri-
gee altitude adjustment performed at the apogee point or apogee alti-
tude adjustment performed at perigee are included in this classifica-
tion. These maneuvers are computationally much simpler than the in-

plane maneuvers having unknown locations discussed in the next section
(10.8). |

10.7.1 Apogee Maneuvers

The primary in-plane apogee maneuvers involve perigee raising

or lowering illustrated in Figure 10.7-1. The most convenient form

A

Figure 10.7-1. Perigee Adjustment at Apogee

of the AV equatinns employs directly the initial perigee radius Tpi»
the desired final perigee altitude Tofs and the initia. apogee radius

ra. The AV magnitude is then given by

| /2 Tpf Ipi
. = = . (10.7 1)
a T, ‘ \/;i + 1, Vrpi + 1,

The direction is given by

A A
Q

AV = + (10.7-2)

where the negative sign is used for perigee raising and the positive

sign for perigee lowering.
10.7.2 Perigee Maneuvers

The principle in-plane plane perigee maneuvers involve apogee

altitude adjustment. The equations gor this maneuver are as follows,

10.7-1




Figure 10.7-2, Apogee Adjustment at Perigee

The AV magnitude is given by

AVP;\/Z \ /—Tai_ | /_Taf _
rp I‘ai + tp r&f + rp

The direction is given by

A A
AV = +Q

where the positive sign is used for apogee raising and the negative

sign is used for apogee lowering.

10.7-2
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10.9 Orbit Trims

Small single impulsive maneuvers are those that allow the use
of perturbation approximations. These small impulse models are gen-
erally quite useful for maneuvers such as minor orbit adjustment or
orbitkeeping. The strategies used to determine the desired orbit

changes are discussed in more detail in Sections 10.10 and following.

The most useful form of the planetary equations for impulsive
maneuver analysis is the Gauss form (Reference 10.9). For maneuver
analysis the force components Fg, Fp, Fy in the radial, tangential
(normal to radius), and normal directions are replaced by the approx-

imations %E(AVR,AVT,AVN) yielding the equations

2 p
da = e sinf AVR + = 4V
n V1 - eZ ( RTr £

na

Ae = Einf Avg + (cosE + cosf) AV-;!

r cosl

Ai p)

na 1l - e

r sinU

AQ = = AV
na2 V1 - ez sini N

6= M- et sV + (1 + Dsinf avp |+ 2sin? a0
nae P 2

2 .
A e ey s AT L2 2r
= — + - = AQ- 2

where f and E are the true and eccentric anomalies tesp;ctively,

n = \/u/a’,

p =a(l -ed),

u = f+&-Q=f+w, and

¢ is the planets mean longitude at the instant from which
time is measured given by ‘

o~
£ = @ - N7

Ref. 10.9: A. E. Roy, "The Foundations of Astrodynamics," The
McMi.llan Co., New York, 1965.
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. The equation (10.9Y-1) can be used to compute combiration

orbital corrections as well as single element corrections. Thus

writing the vector of elements as E the equation (10.9-1) can be

AE = [M] Ao (10.9-3)

This equation then allows the exact targeting of up to three

written as

components of E or the least-squares solution for more than three

components of E.
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10.10 Synchronous Stationkeeping
It is normally desired that synchronous satellites be kept

"on-station" at a given longitude. Even if an equatorial synchronous
satellite is placed perfectly at the desired longitude with no initial
drift rate, the action of various perturbations upon the satellite
orbit will eventually cause it to drift away from that station. The
normal method of stationkeeping is to choose two bounding longitudes,
one on either side of the desired station longitude, and then to use
maneuvers whenever it is necessary to remain between the boundaries.
Due to the accelerations of the tesseral harmonics and the luni-solar
perturbations, the satellite is allowed to drift until it reaches the
boundary toward which the net perturbative acceleration is directed.
At this point 3 maneuver is performed which changes the semi-major
axis of the orbit so that the drift rate is in the opposite direction,
toward the other bound. The maneuver 1s sized so that the drift rate
will decrease to zero just as the other bound is reached. The contin-
ued perturbative acceleration will then reverse the drift and eventually
return the satellite to the first bound, whereupon another maneuver is
performed to begin the cycle again,

By only considering a simple approximation to the tesseral
accelerations, an analytic technique of calculating stationkeeping
maneuvers is described in the RQUEST program documentation (Reference
10-AA). This program was written to provide a '"quick-look" program
for calculations connected with controlling the ATS-1 and ATS-3 satellites,
to be used as an aid in planning and to provide weekly status reports
for the satellites, The equations of this method are given below in
Section 10,10.1. A much more complete analytic theory including the
accelerations of both the tesseral harmonics and the luni-solar effects
has been published recently by Kamel (Reference 10- -BB). The equations
required for this method are summarized in Section 10,10.2 below.

10.10.1 Approximate Tesseral Method

‘The RQUEST program (Reference 10-AA) models the effect of

the tesseral accelerations as a simple drift in longitude of the form

10.10-1



A = -A sin 2A (10.10-1)

where A is the station longitude measured in radians from the nearest
minor axis, and A is given as (-72 ﬂz) (1/6.61)2 (1.81 x 10-6) =
-2.944 x 1077 radians/dayz. The minor axes or stable equilibrium

- points (from which the satellite will not drift {if placed there with
no drift rate) are located according to Reference 10-AA at 108 degrees
W and 288 degrees W. The points of unstable equilibrium are at 18
degrees W and 198 degrees W. The location of these four equilibrium
points as determined by Ksmel in Reference 10-BB are different by as
much as seven degrees and are not exactly symmetrically located.

The four equilibrium points form the boundaries of four
zones in each‘of which the direction of the drift acceleration is
opposite that of the zones on either side of it. It is assumed that
in the stationkeeping mode all of the satellite motion (1.e., both
boundaries) will be within one zone. A stationkeeping maneuver is
calculated given a time, the satellite initial longitude and drift
rate and the bounding longitudes. It is assumed that if the initial
drift is opposite to the tesseral acceleration, that the satellite
drift rate will be reduced to zero approximately at the boundary
toward which it is drifting. For this case, the following calculations

are made

K =128t os2a, - Amy (10.10-2)
| 20 A= A
at, = - (10.10-3)
1 l Ai
11 - V2 }:lmf (10.10-4)

2 A

at, = —XTE (10.10-5)
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AT = Ac, + A, (10.10-6)
M= -(i\1 +V2 2,82 ) (10.10-7)

where

.

ﬂf is the longitudé at which the drift: rate becomes zero,
‘11 is the input satellite longitude.

i is the input drift rate,

At  is the time taken to reach ﬁf.

ﬁl is the drift rate at BOUNDI.

'1. is the average acceleration between BOUND1 and ﬂf.
A;lf is the distance between BOUND1 and ﬂf.

At, is the time taken to drift from Af to BOUND1,

AT is the time from the initial time to BOUND1.

.4 M is the change in drift rate which the maneuver

must produce.
nz is the average acceleration between BOUNDl and BOUND2.
AQ is the distance between BOUNDI and BOUND2,

If the initial drift rate is in the same direction as the
tesseral acceleration and the satellite is between BOUND1 and BOUND2,
- the following calculations are made

A2V 2, 41, (10.10-8)
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n 11 + A)\ (10.10-9)

.
>

Ais/’iA (10.10-10)

>
T
i

. .

1A + A (10.10-11)

>
=
"

where
1 is the average acceleration between :11 and BOUND1,
.AJS is the distance between ‘21 and BOUNDL.

lA is the average velocity between 11 and BOUNDI1.

At is the time it takes to drift to BOUNDI.

'lM is the drift rate of BOUNDI.

If the satellite has drifted past BOUNDL in the direction of the
tesseral acceleration, a maneuver can be performed at the initial time.
In both this case and the previous case where the satellite drifts to

BOUND1 before performing the maneuver, the maneuver is calculated by
CAM = - (1] ' -
‘AM (1M + V2 1, A:lM) (10.10-12)

where

p

is the drift rate at the maneuver (either BOUND1

or 11).

M

1“ i1s the average acceleratfon between the maneuver a
and BOUND2,

AQM is the distance between BOUND2 and the maneuver
point.

10,10-4
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Since 4M is calculated in radians/day, it is converted to ft/sec by

AV = (9.34) 180/ ) AM (10.10-13)

where AV is the velocity change in ft/sec.

10.10,2

In reference 10-BB, Kamil develogs the equations of motion
of the synchronous satellite in tevrms of the deviation in longitude
around the nominal satellite station QS' The solution for the
drift cycle initial conditions and stationkeeping requirements is
found first due to tesseral harmonics only and then due to the inclu-

sion of luni-solar effects.
10.10.2,1 Solution Due to Tesseral Harmonics

As noted in Section 10.10.1, the equilibrium points as

determined by Kamel are located at slightly different points than
in Reference 10-AA, The stable points are located at 76 degrees and
258 degrees (or 102 degrees W and 284 degrees W) and the unstable
equilibrium points are at 164 degrees and 349 degrees (or 11 degrees W
and 196 degrees W). These points are defined by the zeros of the G1
function given below and will of course be functions of the values
used for the various harmonics.

| In the presence of only harmonic accelerations the drift
cycle is indep;endent of epoch and repeats itself when a maneuver is
performed once each cycle. In this case, it is normally termed the
limit cycle. To maintain the satellite within the required tolerance
@ 10) around the nominal station longitude ls, the optimal station-
keeping strategy locates the satellite at one boundary of the tolerance
band (ﬂ - ﬂo or BOUNDI. in the nomenclature of Section 10,10.1) with
the initial drift rate ﬁo which causes the satellite to drift to the
other bounc.lary and back again. Upon reaching ﬂ - ﬁo again the drift
rate is - a o and a maneuver must be performed to prevent violation of

the constraints. In theory, since we are concerned with circular orbits,
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this maneuver is actually a two-maneuver Hohmann transfer between the
two circular orbits (the differing drift rates are caused by the
change in semi-major axis due to the perturbations). In practice the
eccentricity of this "transfer orbit" is smaller than normal residual
eccentricities usually involved with synchronous orbits, so that in
practice only a single maneuver need be made to change the semi-major
axis to the value giving the desired drift rate., The required initisl
drift rate is given by '

'l = F2V3 G1 ;Io (10.10-14)

o

where ﬂo should have the same sign as Gl end the upper sign 1is used
when G1> 0. This is equivalent to the convention of Section 10.10.1
that the drift cycle starts at the boundary closest to the nearest

minor axis (BOUND1) with the initial drift towards the other boundary
and opposite to the direction of the acceleration. The function G

1

and its derivative with respect to longitude, G, are given by

2
G1 = 6 J22 (Re/as)2 sin 2 ('18 -122)
3 3
) J?l (Re/as)- 8in (}s -331)
+45 7 (R /a )3 £in 37 (A -ﬁ ) | (10.10-15)
) 33 e s ] 33 4
and

=127, (Re/as)2 cos 2 (ﬁs - ’122)

3 3
- 335, ®R/a)7 cos (A, -4

+135 3, ®R/2)° cos 3 (4, -4, (10.10-16)
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where Re is the Earth equatorfal radius, a_ is the reference synchronous

semi-major axis, Jij is the 1] coefficient in the Earth's potential
function, and ‘lij is the ij angle in the Earth's potential function.

Numerical values are given in Reference 10-BB as

J.. =1.7208 x 10°°

J.. = 2.005 x 10°°

J.. = 0.16456 x 10°°

3

-0.,2331601 radians

>
W
—
"

0.1154309 radians

» 0.32571 radisns,

X
[

The period of the drift cycle is given as

where

and

2 51/02

-]
|

. :
i& = 17§=E;- 1n [_S + d]

S = 2 vGIGZ:: 0
Gy - GZ"O‘

c G1 + G2 o

Gl - Gzﬁo

10.10-7
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The rotation rate of the earﬂx,&%, i1s given as 6.300388 radians/day.

The velocity increment necessary per cycle is given by

21 :
v=1 'lo v, (10.10-21)

where Vs is the synchronous orbit velocity. A typical optimal drift
cycle with only tesseral harmonics is shown in Figure 10.10-1 taken

from Reference 10-BB. 2
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Figure 10.10-1. Optimal Drift Cycle in the Absence
of Luni-Solar Perturbations

10.10.2,2 Luni-Solar Effects

. After iﬁcluding the effects of the Sun and Moon, the equations

for :\o and 7‘1 corresponding to equations (10,10-14) and (10.10-18) are
given by

7 36,46, |
?1 Y@ ‘1_ C (TP - ﬂmo—' (5,(T)+5,(0))]  (10.10-22)

. -G, "\
A, =¥ 2\/3c 2, +3 ';1—%’\—"' (5,( 1) + 5,(0)) (10.10-23)
[s)

1
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where

LR

N jw

Again the upper sign is used for Gl 2 0 and ”\o has the same sign
as Gl' Equation (10.10-22) must be solved iteratively for 1. A
suitable starting value is 7’1 = 'Fl as given in equation (10.10-18).
The required initial semi-major axis to start the drift cycle is given
by

€ 5,(0) (10.10-24)

s, =a_ (L+7,) (10.10-25)

- 3£]c -6,3
b A . 172
'20-' 13 3G17\0 2V'ﬂ:1 '0' (32(7'1) + 82(0))

, .
+2 € (¢, (0) -25,(0) 5‘0) (10.10-26)

where a is the synchronous semi-major axis after accounting for
oblateness and luni-solar effects, The unitless quantity & is

related to the lunar mass and mean motion and is given as & =

1.628157 X 10-5. The functions Sl’ Cl’ S2 and C2 are related to the

luni-solar geometry and are given as

'S, = 0.941 480 sin (2x,,) + 0.460438 sin (2x,)) + .
+ 0.016601 sin x, + 0.121 571 sin (Ix,,) + 0.188 300 sin (2x,, — M,)
C, = cos*(i,2) [1.030076 cos (2x,,) + 0,201 935 cos (2x,, — AM,,) =
— 0.027949 cos(2x,, + M,,) + 0.026 454 cos (2x,, — 2M )] +
+ sin? (i) [0.502270 cos (2x, + 21) +
+ 0040570 cos (2, + 20, + M) +
+ 8.042080 cos (2x,, + 2y, - M,)] +
+ 01424255 cos (2x,) + 0.024867 cos (2x, - M,) -
— 0.003 545 cos (2x, + AL,) + 0.036 332 vos (2v, + 2y,)%
+0.011 39 cos (. + 21,) + 0.0018 cos (s, + 21 + ML
+0.033783 cosx,, + 0.001776 cos (x,, + Af,,) + |
+ 0.005750 cos(x,, ~ Af,)+ 0.011924 cos(x,, — 21,.) +
+0.011013 cos (3x, + 2y,) + 0.082 13 cos (3x,.) +
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+ 0.023 254 cos (3x,, — M,) — 0.00454 cos (3x,, + M,) +
+ 0.004 106 cos (3x,, — 2M,,) + 0.0073 cos (4x,,) +
+ 0.0042 cos(2x,,) + 0.001 69 cos (2x,, + 4),,)

Sy = 2.169035(sin(2y,) + 6.156 11 sin (2v,)] +
+ 1.52684[1.50378 sin Af,, + 2.819 51 sin M.} +
+0.416777 sin (2, + M,,) + 0.8000 sin (2, + A1)

C, = 0.158736 [cos (21,,) + 0.460 4588 cos (21,)] +
+ 1.52684[0.0549 cos M, + 0.0077 cos A/ ].

where

) = satellite longitude measured along the cquator, then along the orbital plane:
=Q+m+M-—4:
€ = right ascension of ascending node;
w = argument of perigee;.
M =mean anomaly;
8 = Greenwich hour angle:
a = osculaling semimajor axis:
n,, = Moon’s mean motion =0.23 rad day™';
N, = Sun’s mean motion = 0.017203 rad diy~*
. iy = Moon's orbit inclination 1o the equatorist plane, 18.3°<i, < 28.59°;
i, = Sun’s apparent orbit inclination to the equatorial planc = 23.445°;
A, = Mooan’s orbit mcan anomaly = n,,7 + A, (0):
M, = Sun’s apparent orbit mean anomaly = nt + Af (0):

Y=, + M,

l, =, + M,

@, = Moon’s orbit argument of pcngcc measurcd from its Cl]llﬂlOll.ll ascending
node; '

w, =Sun’s appdrenl orbit argumenl of perigee:
Xp=d+0—y,—Q.;
Xe=2+0-1: .
Q, = right ascension of Moon's orbit ascending node measured along the equator.

'

A typical optimal drift cycle which includes luni-solar
effects is shown in Figure 10.10-2. The results using the equations
summarized above from Reference 10-BB are given along with numerical
integration of the equations of motion. The agreement is very good
and is substantially different from the result which ignores the
luni-solar effects. The computer time necessary for the numerical

integration is about 150 times as much as for the analytical result.

10.19-10



o - NIET02% N8

Figure 100 10"2 .

1
THEORETICAL RESULTS /‘\
e / .
-——
Y 0AYS
/\ INTEAVAL
1 -
g
>~uwun: LINTEGAALION RESULTS.
.
v e v i 2 | e o
THLUNL TiCAL
LIR{"IN
JUY') SUUUSRRUI SN R
Y

“w “n (1Y ) "wn

Typical Optimal Drift Cycle,
is 19th May 1972 8h 497m,

ABRGITUOL DIGALES EAS)

10.10-11

"w

Epoch Time




11. NUMERICAL TARGETING AND OPTIMIZATION

11.1 Introducticn

Targeting and optimization in mission analysis is the problem of
selecting certain mission control parameters to optimize some mission
objective while satisfying all mission constraints. Examples are num-

erous and diverse. Among the areas giving rise to suct problems in

orbital mission aralysis are:

1) Orbital selection (e.g., choose orbital parameters to maximize
the science return while meeting all other mission require-
ments) .

2) Maneuver selection (e.g., select a maneuver strategy and set
of control variables to minimize required propellant while

achieving the desired orbital transfer).

Two basic approaches to the targeting and optimizacion problem can
be identified: 1) numerical and 2) analytical. The numerical method con-
sists of building a complete numerical simulation of the system to be
optimized and then using some numerical procedure to determine the opti-
mal control parameters. The analytical approach, on the other hand, in-
volves constructing an analvtical model of the system aud manipulating
it mathematically to obtain the optimal control parameters. Which of the
approaches is superior for a particular application depends upon the users

relative requirements for solution efficiency and flexibility.

In comparing the efficiencies of the two approaches analytical as
well .as numerical effort must be accurately assessed. In general analy-
tical solutions utilize problem-specific analytical techniques to express
the answer in the most computationally efficient form. Numerical solu-
tions by contrast use general numérical procedures to iteratively converge
upon the answer. Thus numerical solutions trade computation for analysis.
Although a numerical solution may place heavier demands upon computer
resources, its analytical counterpart may lay even heavier claims upon
analytical and programming manpower. Generalized numerical optimiza-
tion procedures used in conjunction with generalized system simulators

can enable users to solve difficult optimizatioa problems without writing
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a'single simulation equation or impleménting a line of code. Further,
certain analytical solutions may require the evaluation of transcenden-
tal functions or the solution of nonlinear equations which are computa-
tionally more onerous than a direct solution by numerical means. Finally,

problems which possess simple analytical solutions usually yield with
commensurate ease to numerical solution.

In compariag the flexibility of the two approaches, numerical
techniques have a clear cut advantage. First, only numerical techniques
permit the level of model sophistication necessary to accurately model
operational systems. Only the simplest of analytical models yield a
solution through mere mathematical manipulation. Nonetheless if analy-
tical technique yield sufficiently accurate results in the context of data,
modeling, and execution uncertainties, they should be judged on other more
relevant considerations. Second, numerical solutions generally require
a shorter lead time ftom'problem'statement to answer. By merely build-
ing a data deck for a generalized simulation and optimization program
a relatively unsophisticated user can bring to bear on his problem state-
of-the-art simulation and optimization techniques. The usual lengthy
processes of education, derivation, implementation, and checkout are

circumvented.
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11.2 Mathematica[ Structure of Problem

From the vast diversity of optimization and targeting problems in

orbital mission analysis a common mathematical structure can be distilled.

First, there is a vector u of control parameters which must be selected

to define a trajectory. Second, for each trajectory as defined by the

vector of control parameters, u, there is a vector of constraint param-

eters g(u) together with a vector of constraint limiting values, b.

The number of such parameters can be less than, equal to, or greater than

the number control parameters. The constraint parameters may have upper

bounds, lower bounds, or both. In fact, the upper bound may equal the

lower bound; that is the parameter may have an equality constraint. Fin-

ally, of each trajectory as characterized by its control parameters, there

is an objective function F(u). The object of the problem is then to de-

termine the control parameters, u, which are feasible in that all of the

constraint parameters fall within their acceptable ranges and optimal in

the sense that objective is minimized. It suffices tc consider the case

of minimization since maximization can be handled as a minimization of

the negative of the desired objective.

The general targeting problem is then the well kncwn nonlinear pro-

gramming problem. Symbolically it is expressed as

minimize; F(u)

subject to: g(u) b

where: u

F

o b

IR

is the mxl column matrix of control parameters,

is -the scalar objective function of the vector of
control parameters,

is the nxl column matrix of constraint psrameters,
is the nxlcolumn matrix of constraint parameter limits,

is the nxl column matrix of constraint parameter relations
(each element is the appropriate relation of the triple
<, =, or >).

Note that if a trajectory variable has both an upper &and lower bound,

both it and its negative must be identified as constraint parameters in

this formulation.

Virtually all orbital mission analysis targeting problems can be

L(u-n

cast into this structure. Tables ll~1 and 11-3 provide nonlinear-programaing
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formulations of maneuver targeting problems for the Synchronous Meteorological

Satellite and the Tug/Shuttle Rendezvous, respectively, Table 11«2 is a nonlinear

programming formulation of an orbit selection problem for an Earth Resources
Technology Satellite.

Numerical solution of the nonlinear programming problem (1l1l-1)
presupposses that the objective function F and the constraint function g
be computable from the control parameters, u. Further, all practical
algorithms for solving the general nonlinear minxmization problem require
the gradient of the objective function and the Jacobian sensitivity matrix
of the constraint function. These quantities can be obtained in two
basic ways. First, the user can supply computer code to calculate the
necessary function values. The required sensitivities can then either
be obtained indirectly from the function values by numerical differenc-
ing or directly from additional user-supplied computer code. Such an
apprnach could best be taken in solving the orbit selection problem of
Table 11-2. Brouwer propagation theory would provide the necessary
functional relations among the mean Keplerian orbital elements. Second,
the user can obtain the necessary functional values from a generalized
numerical simulator simply by selecting the appropriate simulation op-
tions in a data deck. The required sensitivities must then be obtained
by numerical differencing. The burden of modeling analysis and computer
coding is thus removed from the user. Further, sophisticated state-of-
the-art simulation proced.res are placed at his disposal. This second
appioach would probably be preferable in solving the maneuver targeting
problems of Tables 1l-l and 11-3. The simulation could then be performed at
any level of refinement from impulsive transfer with conic coasting arcs to

high precision numerically integrated trajectories with accurate representation

of a;l relevant forces.
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PROBLEM STATEMENT

Perform synchronous noncoplanar, fixed duration, fixed thrust maneu-
ver at apogee to minimize attitude-control-system propellant required

on subsequent prescheduled coplanar phasing maneuver.

P; —

NONLINEAR PROGRAMMING FORMULATION

Minimize: tp(ty)

P (0A ap 5A tp)- Ve
PL\IA YA 0A ,p) -1} _
subject to: 360 [ 24 Ap

tp 2 1

where: tp is the duration of the ACS phasing maneuver (sec)
OA is true anomaly of apogee motor ignition (deg)
ay i8 fixed right ascension of the apogee motor
thrust (deg)
8y is fixed declination of the apogee motor thrust
(deg)
is desired westward longitudinal drift rate
(deg/sec)

P_ period of orbit after ACS phasing maneuver (hr)
i inclination after apogee maneuver (deg)

i desired final inclination (deg).

TABLE 11-1

Representation of Synchronous Meteorological Satellite
' Maneuver Targeting Problems as a Nonlinear Program
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Minimize:

subjeqt‘to:

PROBLEM STATEMENT

Construct an earth orbit with the following properties:

1. Daily westward progression of ground swaths witn at
least 10 percent overlap;

2., Ground swath repeat cycle of 18 days;
3. Sun synchronous orbit;
4. Eccentricity less than .006;

5. North-to-south equator crossings at approximately 10:00 AM
local time.

No minimization is possible since constraint
parameters uniquely determine control param-
eters.

e(e) < .006"

(a, e, 1) = .9856122624
NAR(a, e, 1) > 360

NAR(3, €, T) - 360 € .9 S
18N\ (a, e, 1) > 360.

‘ tD(tD) = 10,
where: e 1is the mean orbital eccentricity
ﬁ is rate of change of right ascension of
ascending node (deg/day)
N is the nearest integral number cf orbits per day
(rev/day)
AR westward longitudinal progression of the orbit
between consecutive nodal passages (deg/rev)
'S is the longitudinal width of the ground swath
at the equator (deg)
tp is mean local time at passage of mean descend-
ing node on first orbit (hrs)
a is the mean orbital semi-major axis (km)
i is the mean orbital inclination (deg).
TABLE 11-2
Representation of Earth-Resources Technology Satz=1lite Orbit
o Selection Problem as a Nonlinear Program
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follows:

PROBLEM STATEMENT

Assume the elements of a tug transfer orbit to geosynchronous radius
are available from tracking information just subsequent to the jetti-
soning of the synchronous equatorial payload. Determine the tug ma-
neuver controls to rendezvous the tug with the shuttle orbiter while
maximizing the tug propellant margin when the maneuver strategy is as

1. Perform approximately retro-thrust near tug apogee to
correct perigee altitude.

2. Perform approximately normal thrust near maximum declin-
ation to correct longitude of ascending node and inclin-
ation errors between tug and shuttle orbits.

3. Perform approximately retro-thrust near tug perigee to
secure a low eccentricity intermediate orbit for time
phasing for rendezvous at next perigee passage.

4, Perform approximately retro-thrust near tug perigee for
final convergence of tug orbit to shuttle ortit,

Minimize: P(tl’ Q’)l, 61, dl,..., t“, \p“, 8,“ d“)
subject to: t, + d“ =ty
% *
It = Xg
* *
Yr I
where: ty = thrust ignition time for ith maneuver as
defined in the PROBLEM STATEMENT,
by = angle from vertical plane contairing tug
velocity vector to vertical plane contain-
ing tug thrust vector for ith maneuver
Bi = angle of tug thrust vector above horizontal
) plane for ith maneuver
dy = duration of ith maneuver
t2 = desired time of rendezvous
I, = position vector of tug at time ¢, + d,
* = position vector of shuttle-orbiter at
r
=S  time t, +d,
*
Yo = position vector of tug at time t, + d,
*
s = position vector of shuttle at time t, + d,,
P =

total tug propellant used in ~he four
maneuver sequence :

Table 11-3

Representation of Tug/Shuttie Rendezvous Problem as a Nonlinear Program
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11.3 Numerical Targeting and Optimization Algorithms

11.3.1 Introduction

The range of algorithms designed to solve the nonlinear program-
ming problem (1ll-1) is so vast as to make a survey of even the most im-
portant ones beyond the scope of this document. Reference [11-1] and
[11-2 ]serve this purpose well., The objective of this section is rather
to mathematically specify a nonlinear programming algorithm which the
authors extensive experience on trajectory shaping and maneuver target-
ing has proven vastly superior to all others. For problems in which the
objective and constraint functions are specified numerically it converges

faster than any other of the well-known procedures.

Two other well known nonlinear programming techniques are de-

scribed in later sections, These are respectively the well-known quality
constraint methods and a special-purpose inhibited least-squares algorithm

in use at GSFC. The authors do not, however, recommend their implementation.

Computational experience here reveals that any problem that can be solved

by these specialized methods can be solved at least as easily by the accgler-

ated projected gradient technique. The presence of ary other targeting
and optimization modules in the GMAS would only serve tr. confuse the user

without adding any additional problem solving capability.
11.3.2 ‘Accelerated Proje:ted Gradient Algorithm

The accelerated projected gradient algorithm is based on five

intuitive working principles. The first is one—-dimensional search.

Using cost and constraint function gradient information a direction of
search is established. Then a one-dimensional minimization is performed
in this direction upon an appropriate function. In this manner, a diffi-
cult multidimensional optimization problem is replaced by a sequence of
simple one dimensional minimizations. The second working principle is

linearized constraintc correction. Assume that the current vector of con-

trol parameters is outside the feasible region. This correction scheme
approximates the contours of constant constraints as uniformly spaced
parallel hyperplanes based on their respective gradients and values for

the current control parameter vector. Using this approximation the
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smallest correction to the control paraﬁeters is computed which would satis-
fy all of the active constraints or that failing minimize the sum of the
squares of their violations. One-dimensional minimization of the sum of
squares of the constraint errors is then performed along the direction of
this correction to obtain the next iterate of control parameters. The

third principle is gradient projection. Once a feasible vector of con-

trol parameters is obtained the negative gradient is resolved into two
components - one parallel to and one.normal to the hyperplane tangent to
the boundary to che feasible region at the current point. A minimization
is then performed along the direction of the parallel uegative gradient
component to obtain the next control parameter iterate. The function

to be minimized in this one dimensional search is the fourth basic prin-

ciple of the algorithm - the estimated net cost function. Since the con-

straints are nonlinear, the tangent plane only coincidas with the bound-
ary of the feasible region at the point of tangency. Hence a search
along the component of the gradient lying in the tangent plane will
probably terminate at a point external to the feasible region. Hence

the real object of the search should not merely be to find the minimum
value of the cost function in the search direction. Rather it should be
that unique point along the search ray which vields upor correction back
to the feasible region a new feasible point with the smallest value of
the cost function. This print is approximately deterrined by minimizing -
along the parallel component of the gradient the cost function less an
estimate of the deterioration of the cost function occasioned by correct- -
ing back to the feasible region. The estimate is based upon the linear-
ized constraint-correction formulae. The fifth and final working prin-

ciple is gradient acceleration. It is well known tha® the convergence of

unconstrained gradient algorithms can be drastically improved by using
gradient information from several iterations to estimste the inverse of
the Hessian matrix of a quadratic form approximeting the cost function.
In fact for a cost function of m control parameters it can be shown

that a Hessian-inverse estimating accelerated gradient scheme converges
in m iterations while a conventional steepest descent algorithm converges
only asymptotically (see Reference [6]). To similarly accelerate the

projected gradient algorithm for constrained problems, it is assumed
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that the cost function is a quadratic in m-q variables over the constraint
boundary. Here q is the number of active constraints defining the bound-
ary. Thus covergence should be accelerated to m-q iterations after the

set of active constraints determining the feasible region stabilizes,

For the well known special cases of the general nonlinear programming
problem the accelerated projected gradient algorithm degenerates to the
appropriate special purpose state-of-the-art programming procedures. For
example, if no constraints are present, the algorithm degenerates to the
Davidon deflected gradient procédure.' This procedure has long been con-
sidered the method of choice for solving unconstrained parameter minimiza-
tion problems. At the other extreme, if the problem has more active con-
straints than controls, the algorithm reduces to the Gauss' least squares
procedure for minimizing constraint violation. This technique is generally
conceded to be the best availatle for solving over-determined systems of
equations, Similarly, if the number of constraints is precisely equal to
the number of controls, the algorithm becomes the well known Newton-Raphson
procedure for solving systems of nonlinear equations. This scheme is cer-
tainly the simplest of the cfficient methods for solving fully determined

systems of equations.

In order to conveniently specify mathematically the accelerated pro-
jected gradient algorithm it is necessary first to attend to two matters.
The constraints in the nonlinear program must be reformulated so that the

constraint limits are all zero. Thus problem (11-1) beccmes

minimize:. F(u)
subject to: c(u) a 0 )
where: u iy the mxl column matrix of control parameters

F is the scalar objective or cost function

> (11-2)

¢ is the nxl constraint matrix equal toig(g)-b in
problem (11-1) -

is the nx] column matrix of constraint relations (each

element is the appropriate relation to the triple
<, =, >).

IR

Next the algoritkm must be divided into logically self-contained compon-
ents each of which can best be described separately. This is particularly
true of components such as the one-dimensional minimization logic which is

used in more than one context in the algorithm. The precise operation of
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the overall method can then be presented as simple macrologic relating

these ba51c comporents,
11.3.2.1 Sensitivity Information

The entire algorithm is based upon first order sensitivity infor-
mation concerning the cost function and gradient vector. The cost function

gradient with respect to the control vector evaluated at u is denoted YF(u)

and is defined as the lxm row matrix

(P, = %ﬁ—j for § = 1,..., m. ’ (11-3)

u

The Jacobian matrix of the constraint vector with respect to the control

vector evaluated at u is denoted by J(g) and is defined as the nxm matrix

‘3c. .
J) = —=| for *
- u j 1,00, m

3 u

l,..., n

. (11-4)

These quantities can either be supplied by the user in the form of com-

puter code or generated autonomously by the algorithm through numerical

differencing.
11.3.2.2 Constraint Information

The algorithm functions by manipulating the sencitivity informa-
tion according to logic based on the status of the constraints. To define
this logic certain fundamental definitions must be made and basic relations

stated,

The definition process is best begun by defining the error vector
and its sensitivity matrix. Let K(u) denote the set of active constraints
at the point u, and let k be its cardinality. The term active will be
defined later. For now suffice it to sey that the term refers to con-
straints which may be violated in the next one-dimensional search. Let
o(2) be the index of the £th constraint'in K(u). Then the error vector
at point u is defined as the kxl column matrix

el(_l_l_) = 20(£)<£) for L =1,..., k. (11-5)

Similarly the ervor sensitivity matrix at point u is defined to be the
kxm matrix
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' Bec . ) | .
[S(g)lgj = —FES_)' (11-6)
3 'y }for L =1,...,k
j=1,..., m
= DWW, (11-7)

To motivate the gradient projection formulae, certain geometrical

concepts and relations must be stated. Corresponding to each constraint

function cy is a boundary hypersurface, By, defined by
B, = {uic,(w) =0}  fori=1l,..,m - (11-8)

By is an (m-1)-dimensional nonlinear manifold., It can, however, be approxi-

mated as an (m-1l)-dimensional hyperplane at any point, éf in the control

space based upon the value of the constraint and its gracdient there. The
approximating hyperplane is simply

g () = {u:-Vey(u) (u-u) +cy(u) = 0}  for ivl,..., m. (11-9)

The feasible region for the ith inequality constraint is that half space
of the control parameter space defined by

Ry = {u: cy(u) 2 0} for 1 = 1,..., m. (11-10)
The complete feasible region for all of the constraints is then
n
a (11-11)
R= [ &.
i=1

The boundary of the complete feasible region is then

n
s = U @,NR. - (11-12)
i=1
The intersection in the preceding definition is required o select from

the unbounded boundary, Bi’ of the feasible half space of the ith con-
straint that porticn which is adjacent to the common feasible region, R,

for all constraints.

- The fundamental concept in the gradient projection method of
constrained optimization is a local boundary hypersurface, B(é), defined

at each point in the control space.

B = (1. B,. | ©1-13)
LeK(u)
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The local boundary hypersurface contains the nearest adjacent boundary
face of the feasible region. If g_is infeasible, it can be made feasi-
ble by proceeding in a normal direction toward B(é). If é_is feasible

it can be improved by following the projection in B(é) of the cost func-
tion gradient,

Although analytic expressions for the above constraint correc-
tion and optimization directions relative to the local boundary hyper-
surface can not be developed for arbitrary constraint functions Cys

formulas can be derived for the approximating linear manifold C(U)., Let

cw = N c@ (11-14)
9.61((2_) :
= {a:{S(Q) (u-u) + e(u) = O}. (11-15)

Let Q(é) denote the linear space spanned by the gradients to the active

constraints; that is
o k
Q(u) = {u: u= I anch} (11-16)
L=1

and let Q(é) denote the orthogonal complement to é(é); that is
R® = Q(u) @ Q). (11-17)

It can be shown thac Q(g) is the unique linear space that can be trans-
lated to obtain the linear manifold C(é) and hence whose unique ortho-
gonal projection operators P(é) and ?(é) are sought., These projections

are defined.by the relations for any u in the control parameter space
that " '

u = P(&)u + P(u)u (11-18)
" where
P(w)u € Q@) (11-19)
and
P(wu & AD). | (11-20)

The numerical formula for the operators can be shown to be
P = (sT(ssT) 1s)qu) (11-21)
and

P(u) = I - P(u). (11-22)
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With these fundamental concepts described and formulated, it is
now possible to define an active constraint. The ith constraint is said

to be tight at control vector u when

aj #'="and ci(g) L0 (11-23)
or

a; =Mt
This condition implies that constraint i is either violated or on the
verge of being so. A tight constraint i is said to be unconstraining

at u for the active constraint set K(u) when

a; =", cqy(u) = 0, . (11-24)
and

r; =[(ssDH s](wrFw g0 » (11-25)

Here the sensitivity matrix S(u) is based upon the candidate active-
constraint set K(u). The condition implied by relations (11-24) and
(11-25) is that constraint 1 is on the verge of violation; but that if a
one-dimensional minimization is conducted along a direction parallel to
the linearized boundary hypersurface C'(u) corresponding to a new active
constraint set K'(u) obtained from K(Q) by deleting the ith constraint,
constraint i will remain unviolated. The concepts of tigat and uncon-
straining constraints give rise to the following inductive definition of

the active constraint set K(u) at u:

1) Take the initial candidate ective constraint set K(w)
at u to be the set of tight constraints there;
2) Form thé sensitivity matrix S(u) corresponding to K(u);
- 3) 1f any of the constraints in K(u) are unconstreining remove
that one, constraint i, with the smallest value of r,
return to step 2).
4) Take the existing candidate set K(u) as the desired active

constraint set.
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11.3.2.2 Directions of Search

The accelerated projected gradient method conductg its one di-
mensional minimizations in two basic search directions termed the con-
straint and optimization directions respectively. The formulas for com-
puting these directions at an arbitrary point'g in the countrol parameter
space are readily written in terms of the sensitivity matrix SC@) based
on the active constraint set, K(ED, there. Let the cardiality of this

set be denoted by k.

Consider first the constraint direction, sc(g). The error func-
tion to be minimized along the constraint direction is the squared length
of the error vector. Three cases can be distinguished depending on the
number of active constraints, k, relative to the number of controls, m.
Nonetheless, in all cases an analytical exact correction, Aé, can be de-
rived for the case of linear constraints. This linear exact correction
is then used in the case of nonlinear constraints to provide not only a

search direction, sc(g), but also an initial trial step length yg(ﬁ);

namely .
C(@) = TT%%TT (11-26)
and -
C,a .
To@ = |laul] | (11-27)

(CASE 1: k < m) That unique control correctionm, AQ, is sought which
u g

solves the linearized constraint equation
S au + W) = 0. (11-28)

The solutions to this vector equation define the m-k dimensional, hyper-
plane described in the preceding section as the locally-linearized bound-
ary hypersurface. The desired minimum norm correction dg, is then the

vector of minimum length from W to C(U). Analytically it is given by
8% = -[sT(ssH D e (D). (11-29)

This correction is illustrated geometrically in Figure 11l-1.
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44, minimum norm C(u), intersection of .
correction _7 linearized con;craints //

V- First linearized Second linearized
constraint constraint

Figure 11-1. Illustration of Minimum-Norm Constraint -Correction Direction

k=2<mm=3
(Case 2: k = m) Here the local linearized boundary hypersurface reduces
to a single point. Thus there is a unique solution to the linearized
constraint‘equation (11-28) without the additional requirement that the

length of the independent variable correction be minimized., The minimum

norm correction formula then reduces to the familiar Newton-Raphson equation

2l = sl (11-30)

The Newton-Raphson correction is illustrated geometrically in Figure

11-2.

Second linearized
constraint

o4, Newion-Raphson
Third linearized correction

constraint

[:'C(ﬁ), intersection of

«<— First linearized linearized conctraints

constraint

Figure 11-2. Illustration of Newton-Raphson Constraint-Correction
Direction for k = m = 3
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Substantial noalinearity in the constraint parameters can cause the
constraint-correction logic to fail when either the minimum norm or the
Newton-~-Raphson search directions are used. The gist of the problem is that
a significant nonlinearity in one or more of the active inequality con-
straints precludes the active-constraint system of equations from having a
solution and causes the linearized search directions to vary erratically.
No difficulty arises when the nonlinear feasible region is empty. However,
if it is nonempty it may contain solutions which the minimum-norm or Newton-
Raphson directions miss because they hold all solutions .on the boundaries
of the satisfied tight inequality constraints. Thus an unsatisfied con-
straint which could be satisfied by moving into the feas’ble half spaces
of certain satisfied constraints will remain unsatisfied. Figure 11-3 is

a geometrical illustration of this situation.

Inequality constraint \

Newton-Raphscn or

minimum-norm step

Equality constraint

Figure 11-3, Illustration of Failure of Newton-Raphson and
Minimum-Norm Steps on Nonlinear Constraint System

The algorithm solves this problem by dropping from the active con-
straint set those inequality constraints which are on the verge of vio-
lation but whose feasible half spaces will be entered wher the constraint
'correction step is taken, A set, R, of relaxable constraints can be ar-

rived at and deletad from the active constraint set, K(u), by the follow-

ing stepwise procedure.
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1. R=9

2. Form the set T = {t: (at-“zﬁ) and (ct(g)-O)} - R

3. If T is empty, delete the elements in R from the active constraint
set x(ﬁ) apd proceed with the normal constraint correction logic

4, For each teT form the matrixStQE)from the sensitivity matrix S(u)
by deleting the row corresponaing to constraint t. Similarly form

the vector et(ﬁp from the error vector e(i) by deleting the component
corresponding to constraint t.

5. Compute the tentative search directions
. -1 C
ot@ = -1sT(ssT) ™ 17 (@) (w | : (11-31)
for all teT.

6. Compute

pt = min {Zpt(g)ct(é), min [Vcr(g)ot(g)]} (11-32)
. reR
7. Find t*€T such that
ot = mino® (11-33)

teT
8. If pt* 2 0, add t* to R and return to step 2.

(Case 3: k >m) In this situation a simultaneous solution of all the
linearized constraint equations does not exist; that is the linearized
boundary hypersurface is empty. Hence an entirely new criteria for
choosing a linearized constraint correction, Aﬁ, must he devised. The
accelerated projected gradient algorithm selects that correction which
minimizes the sum of the squares of the residues of the constraint equa-

tions, (11-28). Thus the quadratic functional

£(ad) = fscDal + (4 (11-38)

is minimized with respect to au. The formula for this "least squares"
correction is readily shown to be

aa = —(sTs)"'sTe(q) . (11-35)

Figure 11-4 illustrates the least squares correction gecmetrically.
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Third linearized

Second linearized
constraint

constraint

A4, least-squares
correction

Fourth linearized
constraint

Second lineavrized /
-constraint )

‘Figure 11-4. Illustration of Least Squares Constraint-Correction
Direction for k = 4 mn = 3

First linearized
constraint

Consider next the optimization search direction g°(§). When the
number k of actiﬁe constraints is less than the number of independent
variables at Q it is possible to reduce the cost function by searching
in the direction of the negative gradient projected into the locally lin-
earized boundary hypersurface C(g). To compute this tentative optimiza-
tion direction, s°(g), it is only necessary to apply to the unconstrained
negative cost gradient the projection operator P(Q) which projects any
vector in the control parameter space into its orthogonal component in
Q(ﬁ), the unique linear space that can be translated into coincidence

with the linear manifold C(Q); that is
$°(5) = -[p@) F@17 |lp@ vF@ . (11-36)

Figure 11-5 illustrates geometrically the direction of the negative pro-

jected gradient for the case of a single active constraint,
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First inactive
constraint -

S0l active
constraln
(parabolauiy
of revolu® fon)

Linearized apgroxiration
to sole active (>nstraint
at u

Uncoastraired negative
gradient to cost
function 1t u

ravoad fnactive

Negative projucted coastraint

gradient at u

Figure 11-5.‘ Direction of Negative-Projected Gradient for k = 1 and
m = 3 (feasible region is that region insjde paraboloid,
above lower plane, and below upper plane; ccst-function is
vertical height).
Such a projected gradient scheme would, however, be only asymptotically
convergent, What is desired is a sequence of one dimensional searches
which would be quadratically convergent. Thus once C(4) remains essen-
tially the same (m - k) dimensional linear manifold from iteration to
iteration, the algorithm should converge in at most (m - k) further steps.
This acceleration can be achieved by assuming that the cost function is
a quadratic form in the (m - k) variables of the manifold C(d). Defining an
iteraﬁively updated deflection matrix, Hp, in the manner of reference [11—6]
the éccelerated search direction, s3(u), is computed through the following
inductive procedure where the super~ or subscript D" refers to the current
iteration number:
(1) 1f » =0, set Hy = I and go to step 5,
(2) 1If K(dg) ¢ K(u’ )y aet Hp = I and go to step N,
(3) Compute Aw” = u? - u?"1 and 39 - PP R -~ PP holr?"Y (11-37)

(4) Form A;) - (Au’Au'T)/(A ”Tg”). (11-38)
- (8, 28 T, /(@ g, and (11-39°
Hy = Hﬁ-l + Ap + By, (11-40)

(5) Compute the accelerated optimization direction and the
initial trial step length as

e2() = HpP(u”)_TF(u?) / |8 P(’)g F(uP)]| and ~ (11-41)
2@ = WP ) . (11~42)
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If there are no equality constraints and if all of the inequality constraints

are inactive, then the algorithm reduces to the deflected gradient procedure

of Fletcher and Powell for solving unconstrained minimization problems.

11.3.2.3 Step-Size Calculation

At any particular point 4 in the control space, the accelerated
projected gradient algorithm proceeds by reducing the multidimensional problem
to a one-dimensional search along either the constraint or optimization direc-
tions. In either cise, once the initial point, G, and the search direction
s(8) are spécified, the problem is to numerically minimize a function of a
single variable, namely the step size., The algorithm performs this minimi-
zation via polynomial interpolation based on function values along the search
ray and the function value and slope at the starting point, 4. Consider then
in detail the functions to be minimized along the respective search directions

as well as the computation of their starting values and slopes.

The function to be minimized along the constraint direction, g?(g),

is the sum of the squares of the constréint violations; namely
ho(v) = [leld + ch@_)]ilz (11-43)
Obviously |
h (0) = e ! |2 (11-44)
Differentiation via the chain rule yields
N h.'(0) = 2eT(D)s(@s" (@) (11-45) .

The funccion to be minimized along the optimization direction, g?(g),
is the estimated net cost. This function.consists of the change in the cost
function that resultsvfrom a step of length y along the search ray plus an
estiﬁate of the deterioration in the cost that will arise “rom correcting

back to the feasible region. More precisely

-1
h () = F(atys®)-F(@) - VIF(@)[sT(ssT) J(@elatys®(@]. (11-46)

N e’ - ~ g
change in cost linearized approximation to
function pro- change in cost function re-
duced by a ster quired to perform minimum
of length Yy norm correction back to the
along s°(d) feasible region
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' Clearly v

h (0) = 7TF(@) [sT(ssH 1 (@e @ . (11-47)
Differentiation aéain by the chain rule gives

h,'(0) = VTF(8)s°(Q). (11-48)

Thus the second term in equation (39) contributes nothing to the initial

slope of ho' The tasic properties of the estimated net cost function are
illustrated graphically in Figure 11-6,,

2 /

estimated change in cost function
due to constraint correction /

7
cost \\\cstimated net
Index
cost function
equal
slopes

¢
9 i i 1 1 1 i
: k‘~,§§=:\ 73 (optimal step length) &7
C S~ ’ change in cost
- \\\“~\“‘-.\_‘ function along
: e—— direction of search
.

e ——— -
e

Figure 11-6. Properties of Estimated Net Cost Function

Both the constraint and optimization directions aie based upon
an assumed set of active constraints. Hence for searches in the optimization
direction it is necessary to limit the step size so that the get of active con-
straints does not grow, Suéh a limit b;sed on linear approximatidn can

readily be obtained. Let L({) denote the set of constraints which are
loose at @; that is

L(G) = {i: ¢ (9) > 0}. (11-49)
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To each element £ in L compute the linearized directional derivative, dz,
along the search ray, s°(§).

dy = YCE(Q)SO(Q) for 2eL(d). (11-50)

Then the approximate distance along the search ray to the region of in-
feasibility for constraint & is

—cg(@)/d; 1£f d; < 0 |
Ay = for fLeL(d) (11-51)

where R 1s a large positive constant., Hence a reasonable upper bound on
the step length 1is

A(d) = min Ao (11-52)
LeL(Q)

11.3.2.4 One-Dimensional Minimization

Monovariant minimization in the projected gradient algorithm is
performed exclusively by polynomial approximation. 1In general the minimiz-
ing step length, vy, of a function, f(y), along the search ray Eﬂﬂy) is to be

found to determine a new iterate of control parameters as

ot o= gV + ys@Y). (11-53)

The function, f, is fitted with a sequence of successively more refined

low-degree polynomials; -

3
Pp(¥) = I ajy’ T £(y) for 0 <y < A, (11-54)
. {=0 : .

Since the degree of the approximating polynomial never exceéds three, its

minimizing abscissa value v% can be evaluated in clcsed form. If y;

. exceeds A(B?), then the algorithm takes
Y = AP, (11-55)

If, on the other hand, Y; is less than X(E?), two tests are conducted to
determine whether or not it is an adequate approximation to y*, the true

minimizing abscissa of f. These tests are the conditions
* *
Iva = eyl < €170 (11-56)

where Yo is the length of the initial trial step generated when the search
direction is computed and

o) = £Cvpd | < £, (11-57)
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1f either condition (11-56) or (11-57) is satisfied, the algorithm takes

Y =Y} . © (11-58)
If not, the algorithm fits f with the next polynomial Pp+) in the sequence,
If the current polynomial is the last one in the sequence, the set E of
abscissa values for which f has been evaluated is examinea to determine the
step size 73 with the smallest value of f; that is

Yg = min €{y). ' (11-59)
YeE .

The algorithm then takes
Y= v _ (11-60)

The one dimensional minimization routine makes ingenious use of
all the information it accumulates about f in generating its sequence of

approximating polynomials, {pm}mﬁl' The first polynomial, Py, is a quad-
ratic determined by the requirements that

p1(0) = £(0), (11-61)

P1'(0) = £'(0), (11-62
and

p, 7 = fCV:> (11-63)

where Y; = Yo the initial trial step estimate. The coefficients for the
quadratic are

al = £(0) ' , : (11-64)
al = £'(0) (11-65)
ay = {[£(v#)-a,)/v4-a /y*. (11-66)

The abscissa value that minimizes P is

Y] = -ai/2a,, (11-67)

The second polynomial in the sequence is a cubic based upon the
four requirements that

p2(0) = £(0), _ (11-68)

p,(0) = £'(0), (11-69)

P2(Y:) - f(Y:). (11-70)
and

P (YD) = £G4y (11-71)
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The coefficients for the cubic are

a% = f(0) g (11-72)
al = £'(0)

, (YR -£(0) ~y3E' () 1-vg 3 [£ () —£(0) Y] (0)]) 17
as = - -

2 (Yng§3_Y¥2Y33)
a? = {[(£(v§)-ad) Iv5-a2l/vy-a3}/vy (11-75)

The step length that minimizes Py is .

Y4 = (-a2 + Y(a2)"-3a2a2 )/(3a2). (11-76)

The third polynomial in the sequence is a quadratic passing through
the current best point and its two adjacent points. To be more precise,
the accumulated set of sample points, namely (0,£(0)], [Y;,f(yg)],
[Y:.f(YT)]. and [Y;,f(yz)], is arranged in the order of ascending abscissa
values; The first point whose ordinate value is less than that of the
following point is selected and designated [cz,f(cz)]. The preceding point
is labeled [%;,£f(g;)] and the succeeding point as [c3,f(;3)]. Then P, is
the quadratic polynomial satisfying the three constraints that

4p3(c1) = £(2;), (11-77)

P3(2y) = £(5,), (11-78)
and

P4(83) = £(gy). (11-79)

The formulés for the coefficients of P3 are

al = ~(5,45)£(5,) /D) =(g,+55) £(2,) /D, = (T +2,)£ (0 ) /Dy (11-80)
g ad = £(2,)/D +£(z5,) /D, +E(55) /D, (11-81)

al = £(g,)-t,(aj+ajc) (11-82)
where

D, = (£,-5,)(53=¢)) , (11-83)

D, = (g,-5,)(53-%;) (11-84)

D3 - (CI'C3)(C2"C1)- (11-85)

The minimizing step size for this quadratic is

g, = y; - -a3/2a). (11-86)
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The fourth and final approximating polynomial is a cubic satis-
fying the following four requirements:

p,(8) = £(z)), | (11-87)

P, (2;) = £(zg,), : (11-88)
and ,

P,(&y) = £(z). (11-90)

The formulas for the coefficients of p, are

Y4 . - r
a9 = 8835, £(8 ) /D 4,040, £(5,) /D42, 2,8,£(3,) /D,

+2,8,8,£(2,) /D, (11-91)
a3 = (2,530, )E(2) ) /D +(5 42,48, )£ (2, ) /D,
() E(8) D (E HE,+E ) E(R,) /D, (11-92)
aj = £(2))/D,+£(L,) /D, +£(5,) /D +£(z,) /D, , (11-93)
at = (£(2,)-a})/2,-, (al+alz,) (11-94)
where
Dy = (2,-5,)(85-5,) (5, ~C)) (11-95)
Dy = (2,-2,)(83=8,) (5,-%)) (11-96)
Dy = (2,-2,)(5,-25) (5, ~L) (11-97)
D, = (2,-5.)(5,-2,)(55-2,). (11-98)

The minimizing abscissa value is

o = (-53+/<a;)2-3a§a“>/<3a§>. | | (11-99)

3

11.3.2,5 Variable Weighting

If the ranges of the components of the control or constraint
vectors differ considerably numerical problems can arise in obtaining
and manipulating sensitivity information. If the control parameters
differ drastically in their ranges, the selection of perturbation sizes
for approximating derivatives as divided differences is complicated.
Also extreme sensitivity of the cost function or constraints to certain

control parameters can cause the numerical approximation to the desired

geometrically-defined search directions to be in significant error.
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Proper control parameter scaling can bring such sensitivitles more into

line. Similarly a ccnstraint parameter whose range differs substantially
from those of the others can cause serious problems in search-direction

approximation and curve fitting of the error function.

To avoid these numerical problems both the control and constraint

parameters are scaled. The user's unweighted control-parameter vector, O

is replaced by its corresponding scaled-version, u, given by"

uj - wjﬁj for j = 1,..., m. . (11-100)

The weighting factors are best taken as the reciprocal of the user's initial
control parameter estimate; that is

1/|u§| if ug 40 for § = 1,..., m . (11-101)
w - .
i aJ otherwise

where aj is a special scaling factor 1nput by the user. Alrernatively the

user can specify all of the weighting factors. In any case the factors

should be chosen to contain the variation of each weighted control parameter

in the interval from -1 to 1 with the end points closely approximated.

A similar weighting is defined for the constraint parameters. Let

éi denote the unwe’ghted value of the ith constraint and c4 the weighted

value, Then
cy = viEl for i=1,..., n, (11-102)
The default option for selecting these weights is to take _ o
v, - lﬁﬁi for i=1,..., n (11-103)

- where £1 is the specified tolerance on the ith constraint., This weighting
can, however, lead to rather large magnitudes of the constraint parameters.

A preferable weighting is to set
v, = 1/2i for {=1,,.., n (11-104)

where Ei is reasonably tight upper bound estimate on the magnitude of Cy-
This weighting more nearly achieves the desired prop:rties described for

the weighted control parameters.

Finally an extreme range of the cost function can cause numerical

difficulties in computing its gradient and in the curve fitting of the
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estimated net cost function. Thus a weighted cost function F {ig defined in
terms of the user defined cost F as

F(u) = 2F(u). | (11-105)
The default option for the weighting ig
z = 1/|F(u")]. (11-106)

Alternatively the user can specify z directly. The object, as usual, in

selecting z is to confine variation of F to the interval from -1 to 1 while
closely approximating the end points,

Since the user generally specifies F and ¢ in terms of u only

~

o o OF -
43 35 (11-107)
and
~-§ -
S 3a (11-108)

can be computed by numerical differencing. The equations relating these to
the desired corresponding sensitivities of the weighted cost function and

constraint parameters with respect to the weighted control parameters are

3F_ _ _ oF .

3:!? Z E/wj for j l,... , I (1]—109)
and

ocy 1.9

_3‘113. = Vi W/Wj for J = l, ceey m, (11-110)

11.3.2.6 Algorithm Macrologi-

Now that the fundamental components of the algorithm have been
described, the controlling logic integrating them into an effective targeting
and optimization Pzocedure can be presented. Once a feasible control parame-
‘ter vector has been found the algorithm generates a sequence of iteration
Pairs, Each patr consists of an optimization step followed by a constraint
step. If the user's initia] control-parameter estimate is not feasible,
however, a steadily improving sequence of constraint-correction steps 1is
undertaken until a feasible solution is found. Furthermore, the subsequent
optimization step is omitted after any constraint-correction step which

fails to yield a feasible control-parameter vector,

The unaccelerated optimization search direction that emanates from
u’ is based on the active—constraint sensitivity matrix, S(EY); that is
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. from u

% (W) = -[P@V)VF@)]T, . (11-111)

as discussed previously. Hence §°(QY) lies in the subspace Q(u"). If the
set of active constraints has not changed since the last optimization step,
an accelerated projected gradient direction,_ga, ig generated by multiplying

the unaccelerated direction by a deflection matrix; that is
s (") = H,5°"). (11-112)

The deflection matrix, Hv’ is updated before each application according to
the formulas given in the section on search directions. ' For the case of k
active purely linear constraints and a quadratic cost function this acceler-
ation process guarantees convergence in only m-k steps. The value of the
control-parameter vector after the one-dimensional minimization along the
search ray is then the next iterate; that is

8)\)

*

(11-113)
where (Y;)v is the step length that minimizes the estimated net cost function.

The direction for the constraint—correction search then emanates
v+l. However, since generating a new Jacobian matrix at 2?+1 by di-
vided differencing is such an expensive calculation, the old Jacobian at
g? is used in approximating the new constraint direction. ~further, the set
of active constraints K is frozen from an optimization step to the succeed-
ing constraint step. Hence

su”) = s (11-114)

where 2Y+1 is the solution at the completion of the optimization step. It

can be shown by direction computation that

B(u,,) sS@) = sC@th (11-115)
Hence s°(2?+1) lies in Q(gy+1) = Q(g?). Since Q(g?) and Q(g?) are ortho-
gonally complementary subspaces, it follows that the constraint correction

and the unacceleration optimization directions are exactly orthogonal;

that is
[s°") 1T = o . (11-116)

The value of the control-parameter vector after the one-dimensional minimi-

zation along the search ray is the next iterate; that is
42 * vl
u = (u + Yo gf)
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where (y:)V+1 is the step that min
errors in the active constraints.

a complete projected gradient iter

Unconstrained gradient
of cost function, VF(u")—

Gradient to ¢,

,—f””’;i’:::><::::;

ch(EY)

imizes the sum of the squares of the

Figure 11-7 geomettic#lly illustrates

ation pair without accele=ation.

Plane deternined by
gradient to the cost
function and the gradient
to the active constraint

Minimum-norm constraint
. C\V
step, (Y.8")

Linearization of
sole active
constraint

Complete PGA Iteration, Consisting of Cptimization
Step Followed by Constraint Step for k = 1 and

Figure 11-7,

m = 3 (feasible

Sole active nonlinear
constraint, ¢

Projected gradient

optimization step, (v s°
o

S

)\)

region is the unbounded region below

the indicated nonlinear constraint maanifold).

Finally the algorithm has two

stopping conditions, TFirst the search is

stopped if both the change in the cost function and the length of the change

in the control-parameter vector between two successive cptimization steps

fall below their respective input tolerances.

|F¥*?) - F")| <&
Hu'+2 - wV|| <&,
v

+2
where u” and 5?

»
and F

optimization steps in two consecutive iteration pairs.

Symbolicalliy
(11-118)

(11-119)

are the control-parameter vectors resulting from the

Second, the pro-

cedure is terminated if the marimum permissible number of iterations

specified by the user is exceeded.

Figure 11-8 is a precise summary of

the complete macrologic of the accelerated projected gradient algorithm.
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Figure 11-8, 1lacrologic of Accelerated Projected Gradient Algorithm
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Compute tentative
search directions, dx,

with t omitted from K
for each t € T

v

For each t € T compute
T
r, = min{?ht (QV)Ot,

T,V
nin% T ()6t
e T()ot}

v

%
Select t such that

r*-maxr

t t€T t

Add t* to R; '£><::::>
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R from K;
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Figure 11-8 (continued). 1'acrologic of Accelerated Projected Gradient Algorithm
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‘ Figure 11-8 (continued). Macrologic of Acceleratei Projected Gradient Algorithm
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Figure 11-8 (continued)., Macrologic of Accelerated Projected Gradient Algorithnm
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Obtain accelerated

optimization direction
a® (V) = Hys® (u¥)
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*
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Update current solution
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Figure 11-8 (completed). Macrologic of Accelerated Projected Gradient Algorithm
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11.3.3 Equality Constraint Algorithms a

Algorithms for solving the general nonlinear programming problezﬁrz
with inequality constraints are particularly unsuited to trajectory prob-
lems where the objective and constraint functions are available only im-
plicitly through relatively expensive numerical propagation of the equa-
tions of motion. Most inequality-constraint techniques make extensive use
of the simplex algcrithm and hence require that the objective and constraint
functions be explicitly available so that they can be readily approximated
as plecewise linear functions over the full range of interest. Examples
include separable programming and 211 other methods based upon inner and
outer linearization (see Reference [7]). Other than the prnjected gradient
algorithm the only other two well-known methods not requiring prohibitive
initial piecewise linearization are Zoutendijk's method of feasible direc-
tions and Fiacco and McCornick's SUMT method (see References [8] and [5],
respectively). Neither, however, are very attractive computationally nor
do they have the intuitive appeal of the projected gradient method. Further
the author knows of no implementation of either for practical trajectory

analysis.

Only procedures for solving the specialized problem with equality
constraints have found widespread application in trajectory work. Basic-
ally two approaches have been used exclusively: (1) minimization of a
penalized cost function and (2) zeroing the Lagrangian gradieant. The two
techniques therefore deserve comment. Reference will be made to the

equality constrained program
minimize: F(u)
subject to: c(u) = 0

where: u is an mxl matrix of control parameters (11-120)

F is a scalar cost function cf the vector
of control parameters

¢ 1s an nxl matrix of constraint parameters.

The penalized cost function approach involves forming an augmented
cost function, ﬁ, by adding a penalty term to the original cost to penalize
constraint violation., The penalty term must be such that che unconstrained
minimum of the augmented function and the constrained miniwum of the
original cost coincide. The augmented cost function can then be minimized
by any desired uncenstrained optimization technique the best of which is
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is probably Davidon's accelerated version of steepest descent. The penalty
term is typically a weighted sum of squares of the constraiat errors. Thus

~ n
F(u) = F(w) + I c? (uw (11-121)
— 1-1 1 —’

The problem with the penalty function apprbach is that the penalty term
is only a disguised version of the original constraints, which could better
be dealt with directly. As an extreme example if there are precisely m
linear constraints, the best quadratically convergent descent scheme would
require evaluation of F and ¢ at least m(m+l) times (assumiprg sensitivity
approximation by divided differencing) while the projected gradient algorithm

would require but 2mt+l such evaluations.

The Lagrangian method involves solving an equivalent but analytically
more tractable problem. Lagrange showed that under suitably mild conditions

on the differentiability of F and c the mathematical program (11-120) 1is
equivalent to finding a point where the gradient of the related Lagrangian
function, L, vanishes. Now the Lagrangian is defined to be

L, M = F + 2T ¢ ©(11-122)
where A is an mxl matrix of Lagrange multipliers. Thus the optimality con-

dition is that at the extreme point (u*, X*)

aL

aL =0, (11-123)
cu
Tlux A%

and
g_L_ = 0. (11-124)
H

Equivalently -
3F , T3 . .
wt ) 0 1 (11-125)

uk A*

and

c(u*) = 0. : (11-126)

The Lagrange approach thus reduces to solving the win nonlinear equations
represented by relations (11-125) and (11-126),

Two fundamental objections can be raised to this method. First the
analytical complaint can be made that the number of unknowns has been in-
creased by n with the addition of the Lagrange multipliers., This is significant
since problem difficulty typically increases at least exponentially with di-

mensionality. Second, on numerical grounds exception can be taken to the
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requirement of second partial derivatives of F and ¢ with respect to the
control parameters for solution of the Lagrange equations by the usual

Newton-Raphson numerical ptocedute. Such approximation not only requires
an inordinate number of evaluations of F and E_([m+1][m+2]/2 per Newton-

Raphson iteration) but also is very susceptible to numerical roundof £

problems.
11.3.4 Inhibited Least-Squares Algorithm

The MINMAX "nonlinear iterator" currently in use at GSFC solves the
following specialized nonlinear program

minimize: F(w) = I [cy(w-aj)? +I [e;(w-by)?
ieC 1¢C,
subject to: ci(g) = di for 1eCy

ci(g) z.ai for ieCZUC3

(11-127)
ci(g) s by for 1eCyUC,

where: u is an mxl matrix of control parametars

¢ is an nxl matrix of constraint parameters.

Cy = set of constraint parameters constrained to
equality

Cy = set of constraint parameters coanstrained to an
interval but reguiring no optimization

C3 = set of indices of variables whict. are to be
minimized (bj should be taken smaller than
any value attainable by cy).

C, = set of indices of variables which are to be
maximized (a; should be taken larger than any
value attainable by Ci)'

di = desired value of the cy which is an element of Cy
a; = desired lower bound on c wbich is an element
of Cy or artificial lower bound on ¢y which is an
element of Cs
by = desired upper bound on c , which is an element of C

or artificial upper bound on ¢y which is an element
of C4.
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The algorithm is based upon an iterative minimization of the square

of the error vector plus a penalty term proportional to the square of the

step length in the independent variable. The error vector at control parame-

ter, u, is defined in terms of the set of active constraints there:

iQi)-{i:(ieCl)or[(ieCZUC3)and(ci(2)>bi)]or[(itC2U64)and(ci(3)<ai)]}.(11-128)

Suppose there are k active constraints and that ozis the index of the 4th

entry in K(g). Then the error vector is defined as

ccz(g_)--dU }f g,eC

2 1
ez(g) = cg (2)-b° if (OQCCZUC3) and (c0 >b0 ) (11-129)
L A 2 L

|

ag =-Cqo (u) if (0,eC,UC,) and (c_ <a_ )
s, ~Co, W) 2UC, g
2 2 X v %

. The MINMAX code attempts to generate a sequence of control parameter
values for which the functional '

R@") = [’ e)(u") (11-130)

decreases monotonically. The generation process is based upon the error
sengitivity matrix

de
[S(g")]’L = Y9 for R=1,..., k (11-131)
j 3uj forj-l,.-o’ m,
\Y]

u

Assuming the active constraints vary linearly with the controls the exact

control-parameter correction to minimize R(EQ is
T\ "l.T v v
au¥ = -[(s7S) s7] (u)e(u’). (11-132)

Nonlinear effects can cause this correction to be quite grossly in error.
So instead an augmented functional with a penalty term un the correction

step length is minimized; namely

R (u,0u")= [eTe] (") + A aTuVau’ (11-133)

The coefficient Av is called the inhibitor. It is chosen anew at each
iteration to satisfy the two conditions
aTavay” < € 2 (11-134)

and 1
R(AuV) < R(au”7Y), (11-135)
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The exact minimum of R again assuming linear variation of the active con-

straints with the control parameters is
auv = -[(sTstA1)sTe] (u") . (11-136)

At the beginning of iteration v, lv is estimated as a proper fraction of

Av—l' The control correction Au, is then computed from (11.-136), Then
condition (11-134) is tested. If it is not satisfied A, is increased and

the test repeated. This process is continued until satisfaction of relation
(11-134) 1is achieved. Then condition (11-135) is tested. If it is satis-
fied the iteration is complete and the correction Agy is made to the control
parameters., If it is not satisfied, A, 1is increased and the test redone,
This procedure is repeated until relation (11-135) is satisfied or )\, exceeds
some specified upper bound. When the latter occurs, it is concluded that
functional R has achieved a local minimum and hence that the program (11-127)

is solved.

This algorithm can hardly be considered a state-of -the-art nonlinear
programming technique. It is most effective in solving fully determined sys-
tems of nonlinear equations--that is, when Cos C3, and C, are empty. In this
targeting mode the code is essentially a Newton-Raphson algorithm if n=m and
a Gauss' "least-squares" procedure if n>m. Only a :rivial modification to
either of these algorithms is made in the MINMAX code to prevent excessive
step lengths when the linear extrapolations involved do not apply in minimiz-
ing R. The natural question, however, is that if the excrapolations do not

apply for R why do they apply for R. There is no valid arswer to this query.,

Indeed if a reasonably accurate solution estimate is available the performance

of the MINMAX code would be no better than that of the appropriate Newton-
Raphson or "least-squares" procedures. ' Further, if the estimate was too in-
accurate for convergence of these widely used algorithms the same thing would

probably be true of the inhibited iterator. In such cases. a best-step

steepest descent algorithm applied to the sum of the squares of the constraint

errors would better serve to drive the solution into the range of Newton-
Raphson or least-squares convergence.

The objective function of the program (11-127) is too restricted to
make MINMAX useful in solving trajectory optimization problems. If C3UC,
ey
contains more than one constraint, it is rather difficult to select their

relative weighting factors. Further if C3UC4 is empty there is no criterion
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for selecting a best solution from the multiplicity of feasible solutioms.
In this situation the projected gradient algorithm chooses that feasible
solution closest to the initial control-parameter estimate if the user

provides no explicit cost function.

The general accelerated projected gradient algorithm would provide
a targeting capability with equal or better convergence properties than
MINMAX, plus a completely flexible optimization facility. Indeed, the
projected gradient algorithm targets an initially infeasible control parame-
ter estimate by the method of "minimum norm", Newton-Ranhson, or least-
squares iteration depending upon whether m<n, m=n, or m>u respectively. It
then proceeds to minimize an arbitrary cost function specified by the user
while maintaining feasibility. The constrained optimization technique em-
ployed is the stable gradient projection technique of Rosen with added

acceleration logic to expedite terminal convergence.
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12, Tracking Error Analysis
12.1 Introduction

This chapter will be devoted to the description and definition of
the linear error analysis tracking model, the mathematical formulation
of the required equations relating to the model and the specific algo-
ithms used in the error analysis of the orbit determination process. The
real-time orbit determination process is performed by the GIDS, so the
GMAS formulations will be addressed primarily towards the pre-flight
phase. For consistency and compatibility, the same filter models as used
in the GTDS will be included in the GMAS. Other filters such as sequential
weighted least squares and Kalman-Schmidt are also included. Features that
are very attractive for pre-flight analysis such as the er-or budget map

and generalized covariance analysis will be discussed in Chapter 14,

The measurement models and error sources are given. The GMAS will
model range, range-rate, altimeter, right ascension, declination, direction
cosine, gimbal angle, azimuth, elevation, and satellite to satellite-range
and range-rate. The measurement errors will include biases, timing errors,
tracking station location errors, and atmospheric and ionospheric error

effects.
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12.2 Estimation Processing
12.2,1 Weighted Least Squares Estimation

The weighted least squares estimator assumes that vector observations of

the form
y=£f@x +n (12.2-1)

are processed. For a set of m observations the observed m-dimensional vector ;
is equal to the known (i.e. postulated) vector function f of a set of p parame-
ters denoted by the p-dimensional vector ;'plus random noise denoted by the
vector n. The trajectory determination problem is to estimate x given the func-
tional form of‘f, the statistics of n and the measurements y, Since the function-
al form of f is in general non-linear, the solution must be found iteratively us-
ing linear theory. From linear theory, the solution of equation (12.2-1) is given
by

~ —_ T -1 T —

x=x + (F WF) F WAy (12.2-2)
where x is the estimate of x, ;; is the a priori value of x. F is the observation
matrix given by

the m x p matrix of partial
_ derivatives of f(x with respe:t (12.2-3)

(x=x ) to x evaluated at X = ¥,
and W is the weighting time matrix. The quantity Ay is given by d; -'; - ?(xo)

As a result of the linearization of ?; the correction term on the right
hand side of equation(12.2-2)must be small to not violate linearity. If such is
not the case, then the process is repeated iteratively in standard Newton-Raphson

fashion, each time using the last estimate x for the evaluation of F and A;.

The covariance of the estimate x 1is given by PAx' the inverse of the p x p

normal matrix (FTWF) after the estimation process has converged and when the follow-

ing statistical assumptions of the measurement process are satisfied:
(a) The observation noise is unbiased, 1i.e., €{n} = 0.

(b) The errors in the observation vector components are uncorrelated and
the covariance of the observation noise vector is known and its inverse
is the waighting matrix W. Let of be the variance of the measurement
noise component n,, which corresponds to measurement y,; o% the
variance of component n,, which corresponds to y,; and so on.
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The weighting matrix is

! F;Z -
o :
: G 0
W= 2 (12.2-4)
0 o=2
n m |

Equating the inverse of W to the covariance matrix of measurement
errors implies that multicomponent observations at a given time
(e.g., range, azimuth, elevation) are not spatislly correlated and
that measurements at different times are not time-correlated.

(¢) The mathematical models of the trajectory and observations charac-
terize exactly the physics governing the observation process. All
parameters such as biases, tracking station locations and physical
constants that are not being estimated are known exactly.

The above criteria can never be met precisely in real spacecraft appli-
cations. As a result, the covariance matrix, (FTWF)_I, must be realistically

interpreted with regard to the specific application.

For many applications not all of the parameters affecting f should he
solved-for. In this case the initial assumption that the measurement vector y,

can be related to the state and model parameters is given as

y=fT&D +1 (12.2-5)

where two classes of variables are included. The p-dimensional vector ;; desig-~-

nated solve-for vector, contains as components the state and model parameters

whose values are known with limited certainty and are to be estimated. The gq-

dimensional vector, z, designated consider vector, contains as components all

model parameters whose values are known with limited certainty but are not to
be estimated. Nevertheless, the uncertainty of z 18 to be considered. A priori
values of x and z are specified to be X_ and z. with respective covariance

o o
matrices P and P .
Axo Azo

The linearized solution to equ.tion(l2.2<5)1is exactly the same as for
equation (12~1) and is given by equation(12.2-2),that is, the estimate x does

not depend upon the consider parameters. The more general form of equation

(o}

PAx is given by

(12.2-2) which includes the effect of the a priori estimate x_ and its covariance
' o
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-1
B — T -1 -— =] —- =~
- T - -
X = x + (FWF + PAxo) [FiWay + PAxo(xo x) ] (12,2-6)
The quantity (;;-Q) is non-zero only on the second and subsequent iterations of

an iterative solution since x is determined by the previous estimate,

The covariance of x in the presence of consider parameters is given by

= T T "'1
By, = WIF WEPAZO ETWF + ¢

(12.2-7)
+ FTwncionz PZio + P;io Caxg oz ETWF} 4T
where the following definitions have been made
Paz, = £1(z75) (2-20)") (12.2-8)
Caxgaz = E1Gx-%g) (z-2 )T} (12.2-9)
b= T + Pl )7 (12.2-10)

(o)

and E is the mxq observation matrix for the consider parameters given by

E = {32) (12.2-11)
dz (—-—

It is assumed that no correlation between the measurement noise and the error in

the solve-for or considar variables exists. Even if the initial correlation matrix

CAx Az is zero, a correlation between errors in the solve-for and consider vari-
0

ables will result from the measurement processing. This correlation CAxAz is
given by
c =viplc + FTWEP, ] (12.2-12)
AxAz Ax "Bx,A2 Az, ‘

It is seen from equations (12,2-6),(12.2-7)and(12.2-12) that only the esti-
mator requires measurement data. The equations for the covariance and correlation
matrices require only the statistics, W, of the observations which are usually
known for specific classes of trackers and sensors, Therefore, if one assumes
that the a priori reference trajectory, ;;, is the best estimate, the estimator
equation can be omitted and the covariance and correlation amatrix can be deter-
mined for specific mission sensors and observation profiles. It must also be

assumed that the mathematical models in the program accurately characterize the
physical situation.

For preflight analysis using GMAS studies can be performed to determine:
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o the effect of measurement data errors (random and systematic), measure-

ment time spans, and sampling rates on the accuracy of the estimated
state and model parameters

o the effect of the trajectory dynamics and the trajectory/sensor relative
geometry on the accuracy of the estimated state and model parameters

o the relative effects of different types of measurements on the accuracy
of the estimated state and model parameters.
These kinds of error analysis studies are solely concerned with the influence that
errors in problem variables have on the accuracy of the estimate. Thig type of
analysis can strongly influence the design and enhancement of spagecraft missions
as well as establish requirements for cbservation sensor accuracies, sampling

rates, tracking times, and semnsor locations.

The method of evaluating equations(12.2-7)and(12.2-12)are very similar to
the corresponding calculations associated with the reduction of real data in GTDS
(Reference 12.1). An a priori estimate of the solve-for and consider variables,
EB and ;s;'respectively, along with their covariance matrices, PAxo and PAzo’ is
specified. The measurement schedule and measurement uncertainty, W, is also speci-
fied a priori. The program then proceeds to integrate the nonlinear differential
equations of motion and their corresponding variational equetions to the measure-
ment times and compute the measurement partials. The rows of the matrices F and
E in equations(12.2-7)and(12.2-12)are accumulated as the measurement statistics
are processed. Ultimately the covariance and correlation matrices PAx‘and CAxAz
are calculated at the epoch time. The covariance and corre.ation matrices may
then be propagated to specified times Tyy Tope o o Tg as described in Section
14.2.3. Since the estimation equation is not being solved, iterating is unneces-
sary.

It would appear that since an estimate is not actually being determined, it
should make little difference whether model parameters are assoclated with the
solve-for vector, ;, or the comnsider vector,'E: A subtle difference does exist.
Components of the comnsider vector, E; are maintained at their‘g_griori specified
values throughout the processing, and therefore have no possibility for improve-
ment through estimation. As a result, their covariances are never improved com-
pared to that initially specified, i.e., PAz . The solve-for variables,';, have
their values continually improved through thg estimation process, and this is
reflected through the usually reduced variance elements in PA . Because of the
coupling, the uncertainty of the state components is affected differently if the
same model parameter is associated with E'thén if it is associated with z.
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For compatibility calculations in GMAS and GTDS should be performed as
nearly identically as possible. This will allow error analysis studies performed
with GMAS to be realistic in their prediction of the types of uncertainties to be

expected on a given mission.
12,2.2 Partitioning of the Augmented State Covariances

It has been found (Reference 12.2) that for error analysis applicationms,
considerable savings both in the number of computations and core storage require-
ments can be achieved by partitioning the matrices and vectors involved in equa-
tions(12.2-7)and(12.2-12). This is due to the fact that many studies will involve
the error analysis of several arcs of data which may have different state parame-

ters associated with them as well as other solve-for and/or consider parameters
which may be associated with one or all arcs,

The solve-for parameters are partitioned as

L a)
a -
_ - a, '
z - b - | (12.2-13)
- by
L € :
b .
n
. ¢

where 5; contains the ith arc orbital elements or epoch state, B; contains

all of the other ith arc solve-for parameters, and c contains the solve-for
parameters common to all arcs. Similarly the consider parameters are partitioned
as

.E -
o1
= | o (12.2-14)

dn
e

where 51 contains the consider parameters associated with the ith arc and e

‘NI
]

of af

contains the consider parameters common to all arcs.

The observation matrices F and E are partitioned simnilarly with the

resulting normal matrix being partitioned as
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r ———
T I . T | o T
Fa,WF, | FWF | FoWF,
T T | o T '
(F'WF) = |Fy'W Fy | Fyp'W By : F,TW F_ (12.2-15)
T | o T | » T
-Fc WF, FSWF, : F oW Fc‘
where
F=[F, F, F] (12.2-16)
and
E = [Ed Eel (12.2-17)

The other matrix expressions in equations(12.2-7)and(12.2-12)are partitioned simi-
lar to equatiom (12.2-15).

12.2,3 Sequential Weighted Least Squares

By treating th2 m components (or sub-groupings of them) of the m-
dimensional observation vector y described by equation(1Z,2-1)sequentially, an
alternative formulation of the weighted least squares may be obtained. The first
measurement or group of measurements is processed in exactly the way described in
Section 12.2.1, then that result is used as the a priori for the second measurement
or group of measurements and this process is continued through the entire sequence.
This process is recursive in nature and the recursion relation for the estimation
equation is given by
Berr = 8+ Pyen Frag Wirs e (12.2-18)
where the subscripts N and N+l refer to the measurement being processed. Thus
if individual measurements are being processed (the generalization to groups of
measurements is straightforward) then FN+1 is the (N+1)th row of F and WN+1 is
the (N+1)th diagonal element of W which is the inverse of the noise variance for
the (N+1)th measurement, The covariance of the estimate after (N+l) measurements,

PN+1’ is determined from

-1 T -1 ”
= ,..‘19
sl FN+1 Wyel FN+1 + Py (12 )

The recursive procedure defined by equations(12.2-18)and(12.2-19)is initialized
with the a priori values

X ™ %o (12,2-20)

Po = Pry, (12.2-21)
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To this point there is no real advantage to the sequential:formulation
either for the estimation problem or for error analysis, in fact each step of
the sequential processing would involve the inversion of the matrix PN which is
of the same dimension as the solve-for parameter vector, x. It is thus necessary
to manipulate equation (12.2-19) to produce a recursive procedure that involves
no matrix inversions (at least for scalar measurements, an n-dimensional measure-
ment will involve inversion of an nxn matrix). The result is derived in reference

12.1 and is given by
-1

- - 8t T 12,2
Ptl = Py (1 - B, (B BPyBygr + D B Pyl (12.2+22)
where the matrix B is defined by
T T Y .
Byl = Py W (12,2-23)

Since W is positive definite the matrix Wg is well defined. The matrix to be
inverted in equation (12.2-22) is of the same dimension as the measurement, so that
for scalar measurements no matrix inversion is involved. For this latter case
equation (12.2-22) reduces to

T -1

- - T 2.2
Parr = Py [0 - Py P PaFaeg * ) F (12.2-24)

N+1PN]
where qy,, is the variance of the noise on the (N+1)th scalar measurement.

It should be noted that for the application of error analysis the se-
quential processing of a series of measurements using equation (12.2-24)will give
exactly the same result (within numerical round-off errors) as processing those
measurements using the batch process equation, This is due to the fact that the
a priori state ;g is used as the best estimate for the calculation of the obser-
vation matrices in both processes. For estimation applications it should be
noted that in sequential processing, as each measurement is made the updated
state estimate iN is used in the calculation of the observation matrix FN+1'
In general then, several iteratione through all of the measurements may be
necessary to obtain a converged solution when using sequential processing as
well as for batch processing. If a unique solution exists and if both sequential
and batch processing of the measurements converge, then they both will converge

to the same solution, although not necessarily in the same way.

For analyses involving the inclusion of consider parameters, the batch
processing equations are given in equations (12.2-6)end(12.2-7). To use sequen-
tial processing which is equivalent to the batch processing, it must be noted
that a characteristic of batch weighted least squares is that the estimation

equation(12.2-6)depends only on the solve-for parameters and aence only the
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covariance equation(12,2-7)is affected by the consider parameters. The sequen-
tial processing equations(12.2-18)and(lZ.ZQZA)must be modified to account for
this behavior in the following way. The covariance PN+1 in equation (12.2-18)
must be replaced by ?§+1 which is the covariance which would be obtained at that
measurement, from processing the same set of measurements in the absence of

consider parameters. The equations for the covariance PN+1 and the correlation

matrix C, ., must also be modified. The equations are given by
N+1

” = - M -l v, y - 9

w1 = Xy * P P w1 AV (12.2-25)
= - T T T -

Praer = Py = KarAney ~ AwiKeer * Kuer Tl Kol (12.2-26)

c =C - BT

AxAz +
R TN K+l

where the weighted least squares gain matrix KN+1 is given by

-1
= P! 2.2-27
K1 = PP tvn (1 )

The form of equation(12.2-26)applies for any arbitrarily defined gain matrix,
The quantities Ay,,, BN+1’ JN+1 are given by

- pFT T o

Ager 7 PNFua * Caxsz Ena (12.2-28)
T T T .

Bt = Caxaz Fyey * Faz By (12.2-29)

Iner T Fnerwer t O EnveiBavir Y Ova
12.2.4 Kalman-Schmidt Estimation

The estimation theory described in this section (Relerence 12.3) 1is simi-
lar in many ways to the sequential weighted least squares thecry described in
the previous section. There are two basic differences between the methods--one
major and one minor. The minor difference is simply that rather than relating
an observation to an epoch state by the obsarvation matrix F, the observation is
related to the state at the observation time by the observation matrix H. For
linear analysis this will make no difference. For a general non-linear problem,
again the convergence may be different, but assuming convergence and a unique
Bulut L the 7inal result will be the same. The vovariance amsociated with the
solve-for parameters will also be the same, given the proviso that it is related
to the epoch state or elements through the proper state transition matrix. Thus

for linear error analysis, this difference of processing at each time point 1is
unimportant,

12,2-8
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The major difference between the two methods involves the treatment of
consider parameters. In weighted least squares estimation, the consider parame-
ters have no effect upon the estimator equation, which was inplicit in the batch
formulation(equation 12.2-6)and was explicit in the sequential formulation (equa-
tion 12,2-25)since a gain invdlving Pﬁ+1,the covariance without consider parame-

ters, had to be introduced. In Kalman-Schmidt estimation theory the consider

parameters do affect the estimation as well as the covariance. Simply put, the
estimation and covariance equations are derived as though the consider parameters
were solve-for parameters also. Thus the gain matrix applied to the solve-for
parameters, depends upon the consider parameters exactly as though it were the
partition of an augmented solve-for vector which included the consider parameters.
Then at the measurement, the consider parameters are simply not modified nor is

the covariance associated with them reduced by the measurement.

The general effect of this method is that for estimation, the final result
is in general different from that of weighted least squares. The estimate of the
solve-for state is more heavily influenced by the later measurements in the time
sequence (over and abuve the inherent noise associated with each measurement),
than by the earlier measurements. The rationale behind this is similar to that
for using consider parameters in the first place. Namely that no matter how
carefully a dynamic system is modeled, in the real world there are influences
which are either not modeled at all or are improperly modeled. Thus it makes
sense in estimating a state and its uncertainty at a certain time, to give greater

weight to the measurements nearer to it in time than to those farther away.

For the application of error analysis the covariances generated by the
Kalman-Schmidt consider filter generally lie somewhere between those derived
from weighted least squares without consider parameters and weighted least squares
with the consider parameters. The estimator and covariance equations for the

Kalman-Schmidt consider filter, using notation similar to that of the previous
section, are given in Reference 12.3 as

Xnep = Xyt Ky O (12.2-31)
- - T ' 12.2=-32
Porl = By - Ky Awnl ( 32)
T
c -C - B (12.2-33)
axbz, = Coxtz K1 3w

where the Kalman gain matrix KN+1 is defined by

-1
Kntr = Aner (yraAwe + Cne1Brer + aw) (12.2-34)
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and where the auxiliary matrices A and B are defined by
- T T -
A4y = By Hyyy + CAXAZN G (12,2-35)

=cT T T
Bl " Caxazg Pw T Faz € (12.2-36)

The observation matrices relating the observation to the current solve-for state
parameters and consider parameters are H and G, respectively. The general form
of the update equation for the covariance PN+1 given in equation (12.2-26)reduces
to equation(12.2-32)when the gain matrix is defined by equatior (12,2234,
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. Range Rate.

The range rate derivative deserves special atten-

tion. Remembering that

-p-» b .i: ] (12)3"10)
We write
= u P (12.3«11)
Thus
p = Uu.p+*u-p (i2.3-12)
Because
:. : d Ao i LP N
p = — (pu = pu + pu (12.3=-13)
- dt

- we may.substitute in equation(l2,3-12)above for a , giving

=) 1 o hd * a - -~ =
o= .;(p.p-pu-E)+u°o (12.3-14)

12,3=4



12.3 MEASUREMENT MODELS

The observation matrices referred to in the previous section require
that the various types of measurements be mathematically defined and that
the partial derivatives of these measurements with respect to both solve-
for and consider parameters be computed. The equations for the following

basic types of observations will be taken directly from Reterence 12.2

0 range and range rate

o altimeter height

o right ascension and declination

o direction cosines

o X and Y gimbal angles

0 azimuth and elevation

o satellite satellite-range and range-rate

These measurements are geometric in nature. The computed values for
the observations are obtained by applying geometric relationships to the

computed values for the relative positions and velocities of the satellite

and the observer st the desired time.

12.3.1  Range and Range Rate

: '
' _ :

Range:
Consider the station-satellitc vector:
= (12,3-1)
P = T - Top /(12-37)
vherc

T is the satellite position vector (x,y,2) in
the geocentric Earth-fixed system, and

12,.3-1



Tob is the station vector in the.same system.

The magnitude of this vector, p, is the (slant)
range, which is one of the measurements.

 Range rate:
The time rate of change of this vector p is
‘;? = 'x'" (12.3=2)

as the velocity of the observer in the Earth-fixed sys-
tem is zero. Let us consider that

3 = pu : : . (12.3=-3)

where '

N .
u is the unit vector in the direction of 3.
Thus we have

. [ ]
e XY -

P = pu+pu (12.3-4)

The quantity p in the.above cquation is the computed value
for the range rate and is determined by

.

p = u . T (12.3-5)
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The partial derivatives of range and range rate with
\

respect to the satellite position zad velocity are given
below. All are in the geocentric, Earth-fixed system.
(The Ty refer to the Earth-fixed components of T.)

Range: ‘
. Py
—_ = = (12.3-6)
ari p

\

Range rate:

p 1 [, eey
— = = |- (12.3=7)
ari' P T p
36 pi
Q%i o (12.3-8)

The derivatives of range and range rate with

respect to time are prescnted below. All are in the
Earth-fixed system.,

Range:

p= 0 .T (12.3-9)
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or, as

? = u-:p (12.3-15)
we may write
- 1. =
p= — (P-p-9"*p " 0p) (12.3-16)
(] .

The gradient of the potential U with respect tu the Earth-

fixcd position coordinates of the satellite is thc part of
? duc to the gcopotential:

W . GM [ 3 az Cyg ( ) z
.. ] 05 sin?¢- 1-2 == )| 1. (12.3-179)
ar, e 212\ ri) 1

We must add.to this the effect of tue rotaticn of the
coordinate system. (The Earth-fixed coordinate systcm
rotates with respect to the true of date coordinates with

a rate 6_, the time rate of.change of the Greenwich hour
angle.) The components of p are then

L od au ) ] . . 3 °
P — ¢+ [x CcOS O_ + sin 6 6+ 12,3«
1 = ) { s 0, +y 8] gt T2 % (12,3-18)
L o4 au [ ] L[] L] P .
(] 2 —— + [-xsin 6_ + y cos 6 e - -
2 ar [ g vV gl 0 " T1 % (12.3-19)
. U v
P T — 8 e 12,32
3 ar3 9z : ; (12,320

wvhere ; and } are the true of date satellite velocity

components.
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12.3.2 Altimcter Height

The altimeter height is unique in that the satellite
is making thc observation. While this is actually a
measurcment from the satellite to the surface of the Earth,
it is taken to be a measurement of the spheroid height and
the time rate of change of that quantity for obvious
reasons. Using the formula for spheroid height

= r-gs --2a -
alt e , e (r)
: (12.3-21)
( ¢ 3 'fz z 2
g ()
'. 2 ¢ \r
where
a, is the Eafth's mean equatorial radius,
f is the Earth's flattening, and
2 is rs; the z component of the Earth-fixed

satellite vector. _ )
For error analysis purposes, the partial derivatives
of the altimcter mcasurement with respect to the satcellite
position, velocity, and time are necded. These are derived

directly from the analytical expression for HaLT®
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(12.3-22)
6 a_ £2 (z)3 X > .
-6a - i T T
¢ r ari T
The time derivative of altimeter range is given by
. oH : My m o« 3H. o .
H = ALT T, + ALT r, + ALT r (12,3=23)
ALT 3 1 2 3
T T, ar3

The altimeter measurement is actimlly made to the
geoid surface instead of the spheroid surface. A detailed
geoid is necessary, however, to model the altimecter measure-
ments to properly exploit their full accuracy.

12.3.3 Right Ascension and Declination

’
‘.

The topocentric right ascension a and declination
6 are inertial coordinatc system mcasurcments as illus-
trated in Figure 12.1. These angles are computed from the
components of the Earth-fixed station-satcllite vector
and the Greenwich hour angle 6.,

L. -1 [P2
@ tan (“') * e, (12,3-24)
SV
- P
d = sin 1 (-zi) (12.3-25)
)
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Figure 12.3-1. Topocentric right ascension § declination angles

’ The partial derivatives of these measurements vith respect
t6 the Earth-fixed satellite position vecctor T are given by

Right Ascension: -

%a 'pz“.

Pl (12,3-26)
ary '/‘;12; p'z'I

Ja LI .

—_— (12.3-27)

— =0 (12,3-28)
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Declination:
36 - P 3
ar : (12.3-29)
oy 2T T
) 1 2
3 = Py P3
ar. ST 12.3-30)
3?2 P pl +pz (
| s Py *Po
— = g (12.3-31)

The time derivatives are given by
- :

Right ascension: a = 7] (12,3-32)
. (1'03)

Declination: . S (12.3=33)
P \Jl.-u32.

o f
where the unit vector u is defined as
- P
us — (12,3-34)

=i
L ]
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' 12.3.4 Dircction Cosines

Therc are threc direction cosines associated with
the station-satcllite vector in the topocentric system.
Description of these measurements rcquires tle N Z, and E
(north, zenith and east baseline unit vectors which describe
the tropocentric system along with the G). The dircction
cosines arc computed as:

. . AN N

£ = u . E (12.3-35)
m s u . N (12.3-36)
n = u . gz (12.3-37)

The partial derivatives of the direction cosines with

‘ respect to the satellite position vector are given by
9L 1
—F - E. - fu, 12,3-38
or . o) 1 1 ( 38)
i
. om 1
~—— = =~ IN. - mu.
. 1 . | (12,3-39)
3Ti [
an 1
S— s - zi - nu
ari P (12,340)
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where

Bi % component of E in the L dircction (12.3-41)

| R .
N; = component of N in the r; dircction - (12.3-42)

. . .
2. = component of Z in the ry dircction

i (12.3-43)

The time derivatives of the £ and m dircction cosines are
given by

. -6 * B“’:p

y = (12.3-44)
—
. P+ N-mp
Y e (12.3-45)
p

12.3.5 x and y Angles

.
The x and y angles, as illustrated in Figure 12.2, are
computcd in a tropocentric coordinate system as

. '_1 L |

" X = tan - (12.3<46)
n

’Ya = sin’! () (12,3-47)
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Figure 12.3-2. X and Y Angles

The derivatives of the x and y angles with respect to the
satellite position vector are

12.3=4
ar;  p(l-m?) (
eY N.-my.
e (12.3-49)
3ri D/l‘ﬂg
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and the time derivatives are given by

. -.6 . ‘(n E'!oZ) .

X, = = : (12.3=50)
2 P (l-mz) '

. é.. is.mp

Yoo —————— _ (12.3-51)

12.3.6 Azimuth and Elcvation

‘Figure 12.3-3 illustrates the measurcment of azimuth

and elevation. These angles are computed in the topo-

centric coordinate system as

1!
A, = tan " - : ’ (12.3-52)
- n

(12;3-53)

The.partial derivatives with respect to thc satellite
poSition vector are given by

3Az ) mEi-!.Ni |

PO ' 'l 2 : (12.3-54)
ari P/l Q

asz ) fi-nui (23055

ar, p(l-nz) $ie39)
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Figure 12.3-3, Azimuth and Elevation Angles

and the partial derivatives with respect to time are
|

R ? * (mE-IN)
2 (12.3-56
» (1-n%) )
é P i-mé
" — (12,3~57)
p Jl-l2
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12.3.7 Satcllitc-Satellitc Ranpe and Range Rite

The range measuremcnt from one satellite to another
is computcd as follews. _ y

Let Y‘ be the inertial coordinates of thec transmit-
ting satcllite and fz the inertial coordinates of the receiving
satellite. Then the range (or distznce) bectween the two

satellites is given by

A. R --'[(iz - Stl) . (F('z - X") K - (12.‘3'.58)

The time rate of change of range, or just range rate, is cal-
culated by differentiating (12.3-58) with respect to time
. & - X) - @& - %)
Ra= R -
Relay range and range rate measurements can also be simulated.

Reiay range is simply the sum of two range mcasurements: the

(12.3-59)

range from some transmitting station to a satcllite plus the
range from that same satellite to another satcllite. This
configuration is given in Figure 12,3-4, Thus, according to the
notation in Figure 12.3-4, the relay range is defincd as

R '--|li'l
Relay

+

ﬁl
(12.3-60)
= R + R
) 2

Likewise, the relay range rate is the time derivation of
(12.3-60)or )

R =R R 1
Relay ( 2.3-612
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Since the partial derivative of a sum is cqual to the -
sum of the individual partial derivatives, any partial.
derivative of RRelay or RRelay
the individual partials of the two quantitics in the

sum. Specifically, if one wants thd partial with respect

to some parameter ¢, then

can be found by summing

oR oR oR ,
relay _ 1 (12.3-62)
Tog e FEL ’ ;
aR 3R 3R
relay 1
% oo t i (12,3-63)
a;uy Satellits
Teacked
Satcllite

Figure 12,.3-4, Geometry for Satellite-Satellite Tracking
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12.4 MEASUREMENT ERRORS
This section discusses the individual measurement error sources and
the mathematics used to model them. The equations are taken directly from

Reference 12.2.

The simplest type of measurement error to model is a bias in the
measured quantity itself. Bias errors are considered as constants which
must be added on to the computed value in order to better represent the

observed value. Thus

: .- Z:: + b (12.4-1)
where
2
‘ .
Zc " is the computed measurement corrected for
any biases
‘ .
-Zé is the computed measurement based only on
satellite geometry '
b is the bias
Thus | : :
S
. \ .
oz, . '
35 " 1 for all measurement types. (12.4-2)

12.4.1 Timing Errors

Should the time tag of the measurement be incorrect,
then a correction to this time tag is called a correction
to timing. Any error in this correction can be found by
computing the partial derivative of the computed mcasurement
and multiplying by the time error, or

el

C :
At = Az ] -
[ Crin’ _(12‘.4 3)
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where At is the timing error, but

e e a7
ot oF it .
a .
... -aic- L4 . .
5T T (12.4-4)
where .
T is the satellite position vector
T is the satecllite velocity vector.
Thus
8z Ze . 5
i (a6

The time tag assigned to thc measuremeat is usually
the time at which the station receives the signal. But the
satelllte retransmitted the signal to the ‘receiving station
at some earlier time. Thercfore, two times are involved.

To simplify matters somewhat, the observed measurcments
usually have been corrected so the- computatioan process of
the computed values can assume the satellite and station at
the same time. An error in this transit time correction is
similar to the timing error just discussed, but now the
systematic error is some fractional part of the estimated
transit time, i.e., )

. 92

a1, = —S .7 ar (12, 4-6)
transit time or I .
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where AT is the error in the transit time. If p is the
fractional error in transit time correction, then

R \
AT = p(E') _ (12.4=7)
where
R  is range .
c is spced of light
12.4.2 Tracking Station Location Errors

In the precceding sections measurcment cquations have
been developed for a reclative satellite-station geomctry.
These mcasurcments are used to determine satcllite position
and motion in an inertial coordinatc system at some epoch
time. In transforming from the relative coordinate system
at the time of measurement to the <dinertial system at cpoch
we must- account for both the movement of thec satellite and
the movement of the station in inertial coordinates during
the time period bctween measurement and epoch. The equations
of motion for the satellite are given in Chapter 6. 6
The station movement is due to the movement of the Earth
(considered as a solid body) and to the movcment of the
Earth's crust relative to the central mass. Station co-
ordinates are referenced to a particular epoch time (usually
1900.0) and the movement of the station since this time
is included in the ccmputation of a station-satellite
measurement. The solid body component of station motion
is due to the Earth's rotation, nutation and precession.b
These are very well known and make negligible contributions
to station location error:
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The remaining components are due to uncertainties in the

movement of the Earth's crust relative.to the central mass.

These are: . X

AFSE = error due to solid Earth tidal displuccments.
This is relatively a local crror.

ATy, = error due to occan loading displacement. This
T is also a relatively local error which depends
‘upon the distance of the station from the
. shoreline.
Ar_ = error duc to polar motion

12.4.3.  Errors Due to Atmospheric and Tonized Particle Effects

Uncertaintics in range and range-rate due to

the following transmission medium effects are trcatced.

® -Tropospheric refraction
° -Ionospheric refracticn
° Space plasma

Except at very low clevation angles, (<5°), the primary
effect of the troposphere is a decrease in thc velocity of
propagation. At the Earth's surface, this decrcasc is about
300 parts pcr million, decreasing to about 1 part per million
at a hcight of 30 km. Considering the Earth's atmosphere to
be horizontally stratified, as is almost always donc in data

reduction, a good approximation to the integratcd tropospheric
effect on range measurements is

2.77(NS/328.S) .
ART = meters (12.4-8)
.026 + sin E : -
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‘ The effect of an error in station location on the com-
puted measurement can be deternmined by the following expression
a2 32 T ' |
8 == « Ar : (12,4<9)
°STA  ,r  OTA
where
AL ijs the error in the computcd measurcment dce to }
c .
STA an error in station position
T is the satcllite position vector
\A;STA is the error in station position (in same

coordinate system as T)

This is obvious if onc considcrs, for example, a range
‘ measurement from a station to a satellite. If the station
height werc raiscd, the samc ceffect on the mecasurcement
would occur if the satcllite hcight were lowered.
At any mecasurcment time the total station location
error can be expressed as

= A?é + A?é + A?SE + A;bL,+ AT (12.4<10)

T, Argry P

where the components are defined as
A?S = survey error. This is the error in a station's
location relative to the local datum. Each
station on the same local datum will have a

"different value of A?s.

Ara = station location error due to uncertainty in
location of the local datum with respect to
' the center of mass of the Earth. All stations
" on the same local datum will have the same A—é.
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where

R + AR

R COMPUTED T

OBSERVED
" N is the deviation of surface index of refraction
froa unity in parts per million, and

B is the clcvation angle.

The most scrious crror in applying this corrcction
to data is due to crrors in thec surface index of refraction
at thc tracking site. For this rcason, tropospheric refrac-
tion errors arc modeled as .

3 (AR7) (2.77/328.5)
_— = 12,4-11
aN, 026 + sin E ¢ )

The systcmatic cffect of tropospheric refraction on
rangc rate errors is obtained by diffcrentiating the range
error with rcspect to time,

’ ‘a(AéT) (-2.77/328.5) . .
—————— = cos E E (12 4-12)
aN, (.026 + sin E) '
Elevation:

For elevation observations, the partial with respect

to refraction is

) - 10°? | (12.613)
N 16.44+930 tan E S

—~

—

Azimuth is not affected by refraction.
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Direction Cosines:

g)_!; = -sin I\z sin E %% (12.4-14)
3

m
m

a

|

. . - 9E
= -¢cos A_ sin E —
s 2 ams

Q|

(12,4=15)

X and Y angles:

sin A
axX 2 g}i (12.4=16)
s (sin? E + sin? A, éos? E) g

2y ' ' cos Az sin E 3P
W T Ty (12,4-17)
s Jri - cos? A, cos® E s

The effect of the ionosphere on a range measurement
\
is evaluated by considering

R R

oBSERVED "~ Rcomputep * 2R: . - (12.4-18)
The correction ARI is modeled by fitting a polynomial to

curves taken from JPL SPS 37-41,Volume III, page 8.

The polynomial takes the form

.. Cern? 3 )
SRy = Cj + C) SINE + C; SINE + Cg SINE  (12.4-19)

wvhere E is the clevation angie and the C, arc obtained by a
least squarcs fit to selccted points from the curves. [Lrrors
in range ratc arc obtained by differentiating ARI‘

» ‘An estimate of the error in AR, is given by the above
reference to be 10% on a day-to-day basis for a particular
location. |
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Spacc plasma represents another type of propagation
error. Unlike the ionosphere, which is assdmed to terminate
somevhere ncar 600 KM above the Earth's surfacé, spacec plasma
continucs ad-infinitum, and is reasonably rcpresented by
a 1/r2 law. Thercfore, no closed-form solution exists for
jts effect on measurements, and ‘an intcgration process must
be performed. Let ' )

* = 12.“"20)
Ropservep = Reomputep * 8Rsp ¢
where ARcp is modeled by the relationship
44.3 . .
= -
- ARSP —;-2—- Np ds ) (12.4=21)

and
f = frequency of wave (Hz)
Np = proton density per cubic centimeter

s = ray path

The proton dcnSity is taken to be a 4th degrece polynomial

R ¢+ XZRZ + K3R3 + K R‘ (12.4=22)

+ K 4

N =K

P 0

1

as a function of the distgncc from thc sun.
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13. MANEUVER ERROR ANALYSIS
13.1 Introduction

The analysis of the errors associated with spacecraft maneuvers
is a very important part of GMAS. General error models are defined for
attitude determination and control errors (pointing) and engine char-
acteristics (proportionality, resolution and timing) for both impulsive
and finite burn models of spacecraft orbit change maneuvers. The
purpose of the analysis is to assess the errors which may result after
performing o burn maneuver and the impact that these errors may have
upon the mission success.

In the Monte Carlo mode of analysis, the various arror sources
are sampled to generate actual states which are then propagated through
the mission, statistics are then collected upon various mission param-
eters of interest in the analysis. In the linear mode of analysis,
actual trajectories are not analyzed, but rather the ensemble of pos-
sible cases as described by the nominal trajectory and covariances of
state arrors and coveriances of the various error sources. All error
sources are assumed to have gaussian distributions. 1In the linear
analysis state covariances are propagated by the use of the state
transition matrixes.

In many cases where it is necessary to model the wmaneuver as a
finite burn, the burn is short enough that a simplified model for the
state and state transition matrix propagation over the burn arc is
sufficient. The equations for this model are also given in this

section,
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13.2 Impulsive Maneuver Error Modeling

The execution errors resulting from performing a velocity change
maneuver AV, are based upon an execution error model defined by four
independent error sources, The first two error sources are in the
direction of the AV but affect its magnitude. The proportionality
error is determined by the proportionality factor k. The resolution
error s is also in the direction of AV but is independent of its mag-
nitude and corresponds to a thrust tailoff error from the engines. The
error in the direction of AV is thus given by

A\

ew = k AV + S W (13.%-1)

where AV has been written for [a¥|.

The pointing error is formulated as two independent errors along
mutually orthcgonal axes which are both orthogonal to the maneuver
impulse direction. For purposes of unique specification let one point-
ing error angle 8a be measured in the xy plane of the coordinate sys-
tem in which AV is expressed, then the error due to Ja (which is

presumed to be a small angle) is given by

€, = 1V3sa [ 5%1-3 - é%i ?] (13.2=2)

- A
where the x and y subscripts refer to those components of AV, {, ?, k

are the unit vectors in the xyz system in which av is expressed, and
the auxillary variable u is defined by

2

- 2,%
u o=V v | (13.2-3)

The second pointing angle &3 is in the direction orthogonal
to both 3a and AV, Presuming 88 to also be a small angle the

velocity error corresponding to it is

v_av V. av
o = 85 MV 8V, , 2 AV,
B u u-

A

3 -uk (13.2-4)
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from zero-mean distributions with variances ¢ 4 o, and ¢

Combining equations(13.2-1),(13.2=2)and(13.2-4) ,the complete descrip=-

" tion of the execution error vector ¢ 1s written as

o Zk +.s - AVAVySa + AVxAVZSﬁ n
- A av A X u t
- AV AV 8a - AV AV _3$p3
S - X y 2z A
+ |(k + ZG)AVY m ] j
p S A '
> - 13.2-5
(GRS usﬁ] k ( )

The four error sources are generally taken to be independent, zero mean,
gaussian distributed variables. A more general error model might presume
correlated, non-zero mean, or non-gaussian distributed variables, but the
above model is generally quite sufficient. Since the four error sources
are independent, equation(13,2«5)is suitable for use in Monte Carlo anal-

ysis directly, with actual values of k, s, 8« , and 83 being sampled

2 2 2 2

k’> s’ B

respectively.

For the purposes of linear error- analysis, the execution error

. . T, .
covariance matrix Q = €{e € } is necessary. The components of Q are

given below, presuming the assumptions made above.

2 2 2 2 2
2 2 asz AV AVy Ua ‘VX sz 08

Qll = AVx (ck + 2)+ 5 + > - (13.2=6)
AV u u
2 2
o 2 2 2 AV g,
= Q = AV AV ,2+L_M+_Z__£_ (13.2«7)
21 x y|] k 2 2 2
AV u
2
2, % 2
Q13 Q31 AVx AVz [Gk + A_VZ - 0/3] (13.2-8)
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2]
2 ) o2 AVZAVXZ caz .avyzavz2 %
Q22 = AV © (%k“+ 2)+ 3 + > (13.2-9)
y AV u u
’ = = -— . 13.2«
Q5 Q3 Avy av, | o "+ sz % ( 10)
2. 2. o? 2 2
. S
= —) + 13.3-
Q4 8V " ( o +AV2) u"ep (13.3-11)

The state cuvariance after a AV maneuver is performed is then given by

|
ot .+ [_%_E—%—] (13.2-12)

where the + and — superscripts denote after and before the maneuver
respectively.

Equations (13,2-1) through(13.2-11)are taken primarily from
Reference 13.1. They are essentially equivalent to the corresponding
equations of References 13.2 and 13.3 with a few minor exceptions.
Reference 13.2 does not develop the covariance Q, using only the Monte
Carlo form in which the resolution error is modeled as a uniform distri-
bution rather than gaussian. Both References 13.2 and 13.3 determine the
direction of the erroneous AV as the nominal AV plus pointing errors
only. The proportionality and resolution errors are then added to the
nominal magnitude which is then used along the direction which includes
the pointing errors. For small execution errors the difference between
the formulaticn given above and that of References 15.2 and 13.3 will

only be of second order and is hence generally quite negligible.
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13.3 Finite Burn Maneuver Error Modeling

The execution errors resulting from performing a velocity change
maneuver which takes an appreciable time span are based upon four inde-
pendent error sources as is the case for impulsive maneuvers. For a
burn with a fixed thrust level and direction, the error sources which
are in the direction of the thrust are the thrust magnitude error and
an error in the duration of the burn. As in the impulsive case, two
independent pointing errors are modeled.

As was the case for an impulsive burn, either an erroneous state
(Monte Carlo appiication) or a covariance describing the ensemble of
erroneous states (linear analysis application) is necessary at the
completion of the burn. For the Monte Carlo application, actual val-
ues of the errors in thrust ( 8T), pointing ( 8a, 83 ) and timing

( 8 tB) are sampled from zero-mean gaussian distributions with vari-

ances cTZ, ahZ’ ﬁBZ and ¢ 2 respectively, A slightly more compli-

cated error model could repﬂaze the single timing error StB by errors
in the time of burn initiation and the time of burn termination. Once
the sampled errorg are added to the nominal thrust parameter values,
then these erroneous thrust parameters are used by the propagation
model which has been specified - whether high precision numerical
integration or an approximate schemé - to generate the sampled state
vector after the burn as a function of the initial state which may

also have included sampled errors.

For the linear error analysis application the situation is some-
what more complex. The state errors at burn completion will arise from
two sources, namely the state dispersions at the start of the burn,
which must be propagated through the burn, and the actual execution
errors related to the burn itself. The effects of both of these error
sources are found by the use of the state transition matrices ¢ and 6.
The first of these is the 6x6 state to state transition matrix, relating
deviations in the final state to deviations in the initial state. The
second is the 6x4 control to state state transitiorn matrix relating
deviations in thg final state to deviations in the thrust control

parameters. For the finite burn model considered here, the four
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control parameters are the thrust magnitude (T), the two angles specify-
~ ing the inertial direction of the burn and the duration »f the burn (tB).
The two state transition matrices may be calculated by high precision

numerical integration or some approximate scheme, but in either case the

column of @ corresponding to tB is simply

—a—’s—=[ooo'AAA]T' (13.3-1)
atB ’ ’ ’ X’ y’ z - *

where X is the state vector and Ax, Ay and Az are the components of the

thrust acceleration given by

(T/m) cosa cosp

3>
]

(T/m) sina cosg (13.3-2)
(T/m) sing

where m is the spacecraft mass. The covariance of state errors after

+
the burn (P ) is given by

pt = or e! +oud (13.3=3)

where P~ is the state covariance at the burn initiation and U is the
2 2

2
GT R 7"3
and otz giving the statistics of the finite burn errors. The above

equations are taken primarily from Reference 13.4.

diasgonal covariance of control errors with elements

For some approximate analyses, it is useful to assume thet the
burn is short enough so that the state is sufficiently approximated by
linear motion, In this case the state at the conclusion of the burn

is given by

. R nut t (m +mt_) m +nt
RF = Ro+§ot8- 0 g + T E? ?t B 1n 0 E -1] (13.3=4)
2R g Bo
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- - i pt . m_+mt
RF =R - _L_.B.. + = 1n< o B) (13.3-5)
o 3 m
R o

where ﬁo and m  are the position vector and mass before the burn, m
is the mass flow rate, ﬁF is the position vector after the burn, n
is the gravitational parameter, tB is the burn time, T is the thrust
vector, and Ro and RF are the magnitudes of ﬁo and ﬁF' The state

transition matrix ¢ is given by

pth ﬁoﬁoT .
$ =1- 3 I-3—F (13.3-6)
2R R
[o] o]
¢, = ;I (13.3-7)
= = T
nt R R
¢, = - 2 -3 23 _ (13.3-8)
R R
[o] (o]
$, =1 (13.3-9)

¢ = (13.3-10)

The first three columns of the state transition matrix © can be expressed
as

aT : .
[ T ,/3)] (13.3-11)
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where

cosa cosf -T sina cos B

BT .
3('1',0,[3)

sina cosf T cosa cos f3

sin g 0

and where

(V] [V}
HJp!
(]
B'Iwﬁ
P
3
2
w' | 3
&
N
—
=}
VS
a ;
3.
(-]
g
'
—
-

+
Bl

N
1‘4‘~\
g
2°
w | 8-
(a4

e~
S——

(=)

=3
P
3
?ro
w | 3
(g

o
S—”’
- |3
S ]

and

+
=N g

-T cos a« sing
-T sina sinf

T cos 3

(13.3-12)

(13.3-13)

(13.3=-14)

The fcurth column of © is as given in equation(13.3-1), so that now

with & and © equation(13.3-3) may be used to calcula%e the covariance

at the end of the burn.

primarily upon References 13.5 and 13.6.
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l4. LINEAR AND MONTE CARLO ANALYSIS
14.1 Intvoduction

One of the tasks to be performed by GMAS is the analysis of
the effect of errors upon various missions. Errors or uncertainties
arise from many sources. Chapter 12 discussed the modeling of
measurement errors involved in the spacecraft tracking process.
Random noise and fixed biases can occur in various quantities which
are measured by ground- or spacecraft-based instruments as well as
in dynamical quantities such as the mass of the earth, gravitational
harmonics, spacecraft drag, reflectivity and engine characteristics,
ephemeris errors, etc. Uncertainty can also arise from modeling all
of the effects involved in an analysis in too simple a manner. All
of these sources of uncertainty must be assessed in pre-mission
planning to be able to predict mission feasibility and to assist in
both mission and spacecraft design. During a mission, also, the
effect of current and expected uncertainties must be assessed for
the impact upon the continued success of the mission.

Error analysis can be addressed from two points of view. The
first point of view assumes that all errors and uncertainties are
"emall'. When this is the case all equations of mction, measurement
equations, any mathematical representation of the dynamics under
consideration, can be linearized about the nominal or best estimate
of the values of all of the parameters. This allows a much more
tractable mathematical representation. The second point of view
makes no assumption about the size or effect of any error source,
the only assumptions made are that all important effects are prop-
erly modeled and that the uncertainties in all parameters are
described by gaussian distributions which may be correlated with
one arother. Monte Carlo analysis can be performed >y statistically
sampling from the various parameter distributions to obtain simulated
actual values for the paraﬁeters. These actual cases’'may then be
used in the full non-linear form of the model to obtain distributions

of the resulting parameters of interest. The Monte Carlo analysis

K
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' although generally more realistic, is of course far more costly
in terms of computation time due to the large number of samples
required for reasonable statistics to be obtained.

This chapter will also cover error sensitivities, error
budget analysis and the linear propagation of errors, as well as
Monte Carlo techniques. The sensitivity of an estimated state to
the parameters which are known to be uncertain but are not esti-
mated (consider parameters) is frequently of great interest in
mission anulysis. These sensitivities, like covariances, can be
calculated for error analysis purposes without actual data being
necessary. Error budgets allow the identification of the effects
of various error sources as they contribute to the total uncer-
‘tainty. Monte Carlo methods are frequently a necessary technique,
but must be used with great care due to the high cost involved
and the possibilities for misinterpretation of the statistics

involved.
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14.2 Linear Error Analysis
14.2.1 Error Sensitivities

In Chapter 12, the expressions in equations 12,2-6,12,2-7,and
12,2-12 were given for the batch weighted least squares estimator and
covariance equations in the presence of consider parameters. Within
the restrictions of linearity, the estimator equation 12,2«6 prescribes
the computations necessary to obtain the "best' estimate of the solve-
for parameters. By calculating the derivative of ax, the correction to
be applied to the initial estimate, with respect to the vector of consider
parameters, it is possible to obtain the sensitivity of the estimate to

the consider parameters.

This is given by

A
BaX . _yYFTwE (14,2-1)
oz
Where Y is the inverse of the normal matrix as defined by equation (12.2=10)
and F and E are the observation matrices for the solve-for and consider
parameters respectively. Substituting this into equation(12,2«7) leads

to the expression for the covariance in terms of the sensitivity matrix

A a\T
- 04X 04X
PAx ‘1’ +<62>PAzgaz>

T -1 -1 A
-(65-\%) CAxcdz PAxO‘I’ - VB, oc.xxo.xz()%;—) (14.2-2)
The first term in equation(1l4,2-2)is due to measurement noise and the

a priori covariance. The second term is easily identifiable as the
contribution due to the consider parameters. The last two terms occur

only if there is an initial correlation between the solve-for and consider
parameters. The sensitivity equation is useful for assessing the dependence

of the estimate upon assumed values of the consider parameters.
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14.2.2 Covariance Propagation

The linearized dynamic model which relates errors on deviations

in the state at one time to those at another has the form

AX ==¢&

+ +
k ST S L N U, k-1 (1+.23)

Where the state to state and consider parameter to state state trans;tion
matrices are given by g and @ over the time interval (tk-l, tk). 1he T
effect gf dynamic process noise over the interval is given by Yrk-1 and T 7T
the vectors of sclve-for and consider parameters are given by X and z re-
spectively. The corresponding equations for the propagation of the

covariances discussed in Chapter 12 are given by

T T T
P = QPP o + "6cC ")
Axk Axk-l AxAzk_l
+@cC T + gr._ 6"  +9Q (14,34
AXAZ 6 Az k,k-1 *.2=4)
k-1 o
and
C. =@C + @P
A A
aAX z‘k-l X.\Zk_l _\Zo

(14.2=5)

where the subscript k, k-1 is presumed on all of the state transition

matrices. The quantity Qk k-1 is the contribution due to dynamic process noise.
3

14.2.3 Error Budget Analysis

In standard error analyses the normal result of performing the
error analysis of a set of measurements is the covariance matrix P which
describes the effect of all error sources which were assumed for the
analysis. The individual contributions of the various error sourcés to P
are thus not identifiable. To be able to identify the contributions of
the error sources to P it would normally be necessary to make repeated
analyses each with a specific error source turned on. A formulation which

at each step of a sequential analysis gives the contribution due to each

error source is therefore highly desirable.

14,22



The equations for an error budget analysis, wherein the components
of the total error budget can be propagated in a single set of calculations
are given below. The covariance PN’ based upon all measurements up to and

including the Ntbh, is given by
- =1, T -.-T T
Py =S (N) £fak ax "} s () + 5 (M) {azaz™ | 5,7 (V)

+5_ () E{amad' | SL) + B ) + P (V) (14.2+6)

where as before x refers to the solve-for parameters. The consider para-

meters which were previously denoted by z have teen brcken into two classes

- dynamical consider parameters z and the measurement consider parameters m.

The sensitivity matrices Sx(N), Sz(N) and Sm(N) relate the various error
sources to the current state estimate. The PU(N) and Ps(N) matrices are
the contribution to the state uncertainty due to state process noise and
measurement noise respectively. The quantities Axo, Az and Am are the

initial solve-for and consider parameter errors given by

Aio =x (0) - x(0) (14.2-7)
AZ =z -2 (14,2-8)
AL = m-m (14.2-9)

The initial solve-for and consider parameter second moment matrices are

given by

€ {AROA:?OT}

L]
g
+
%I

©) - iA(O)] [;(o) ] ;A(O)]T (14.2-10)

(€.
i,

[

N

L

NI

]
]

g

+
—

il

[ ]

NI
Rl
~—

~NY

[}
\
-
[

N (14,2-11)

. T
E{.\t‘n.sm }
where the possibility for an initial mismatch or non-zero mean for the

parameters has been allowed for. The subscript A indicates the mean of

the ac:ual distribution and the gAx , P._ and P_“m are the initial

"
L
8

+

~
al

1

21
>
(—
—
j=1)

J

L
sl
g}

(14.2-12)

az

covariances.

. The proceedure of the error -budget analysis is to use recursive

relations for the matrices Sx’ S,, S_» P and P instead of the covariance
m
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matrix P. The relatiohs are given by

sx(u) = [I - K Fy ¢N’ N-1 S (-1) (14.2-13)
- I

Sz(N) = L_I - KNFN ¢N, N-1 Sz(N'l) + eN,N-I] B IS\‘EZN ‘(14'2-14)
s, (N) = _I - KNFN- d’n,*n-l Sm(N-l) - KNEmN (14.2-15)

] T T
B OO = L.I ) K"FN.[%' N-1 P“(N-l)d’N’ 17 QNo N'l] [I - NF?ML_“))

P ) = |1 - &NFNJ[de’ el PS(N-1)¢:’ N-l] [1 - KyFy T]+ KyRKy|
; (14.2-17)

The.inicial values are given by

5.0 =1 (14.2-18)
' 5,00 = sm(o) =P (0) =P (0) =0 (14.2-19)

The state to state and dynamic parameter to state sta®e transition

matrices ¢ and & are over the interval (t tN) as indicated, the

N-17
dynamic process noise and measurement noise are given by QN N-1 and RN
b

respectively. The observation matrices FN’ Ez and Em' are the same as
N N
defined in Chapter 12, except that the consider paramefer matrix has been

partitioned into dynamic (z) and measurement (m) parameters.

It has been tacitly assumed in the above equations that no correlation
between the dynamic and measurement consider parameters exists, if there

is it can always be removed by defining a new set of dynamic parameters

by
2 =z -c_ Plg 14.2=20
AzAm Am (14.2-20)
and then z’ is treated just as 2z was.
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In general, even though there may be no initial correlation be-
tween the solve-for and consider parameters, a correlaticn will result
from measurement processing. The equations for these correlations

are given by
~.=T .
CAxAzN =S, (N) E{.\zsz } (14.2-21)

and

. - T 14,2222
CMM‘N Sul (N)g{.xm.sm } ( )

The theoretical development behind the equations given above for the error

budget analysis is contained in Reference 14.1.

The generalized covariance technique described in Reference 14.2
is specifically concerned with filter sensitivity to differences between
the assumed (by filter) and actual models of the world. Either the
standard formulation of error analysis equations as summarized in Chapter 12,
or the formulation given above in the error budget analysis may be used,
noting that the consider parameters z and m are further subdivided into
parameters which are not estimated but affect the computation of the gain
matrix (consider), and parameters which are neither estimated nor affect
the gain matrix (ignore). Essentially then, the generaiized covariance
technique generates sequentially both actual and assumed statistics.
The differences tetween assumed and actual error statistics can involve
differences in means, standard deviations, and correlation coefficients.
Actual error statistics are also defined for the ignqre parameters whose

uncertainty has not influenced the filter design.
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14.3 Monte Carlo Techniques

The GMAS Monte Carlo capability will be used primarily to sup=-
plement the linear error analysis. Monte Carlo analysis may be used
to test lincarity assumptions and to analyze the cumulative effect
upon dispersions in mission parameters due to a sequence of maneuvers
each affecting the next. Each particular Monte Carlo sample will be
run exactly as a deterministic case, with the uncertaia parameters
being samplcd as described below to generate the particular case, and
the statistics of the parameters of interest being accumulated.

The standard method of sampling from the distrioution described
by the nominal vector of parameters X and associated covariance
P = é’{(x-i) (x-i)T } requires the computation of the eigenvalues
and associated eigenvectors of the matrix P. The matrix S of the
eigenvectors is the orthogonal matrix which diagonalizes P giving

the diagonal matrix D, defined by

D = S'ps | (14.3<1)

whose diagonal elements are the eigenvalues of P. The Monte Carlo
samples from the distribution defined by X and P ere generated by
first defining & vector, 13 , of k normally distributed random

numbers, where k 1is the dimension of X. The components of £ are

given by

£, = d.n (0,1) (14.3-2)

i J
where dj is the j-th diagonal element of D and n (0,1) is a random
number from a gussian distribution of mean O and varciance 1, The

Monte Carlo samples are given by
x = x + 8¢ (14,3-3)
An alternative scheme for sampling a distribution which may be
computationally faster when the eigenvslues and eigenvectors of P

have not been calculated for other purposes, is given in Reference 14.3.

The matrix P 1is factored into the product given by
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P = RR (14.3=4)

where the square rnot matrix R 1is an upper-triangular matrix, The

Monte Carlo samples are then simply given by
A T :
x = X +R r(0,1) (14,.3=-5)
where r(0,1) 1is a k-dimensional vector of (independent) random

numbers n(0,1). The elements of the matrix R are given by the

recursive relations

=
|

-1
2 -
4y - JPH - DRY, L i=l,....k  (14.3-6)
j=1

0 y I <
§i° i-1 (l4.3-7)
1
-— (P,, - j=i+l, ...
R, P ) RynRim) » J71FL, .00k
m=1

Whenever random numbers are obtained for the purpose of
generating Monte Carlo samples, the covariances which are sampled
should always be reconstructed from the actual samples which are
generated. This is so that comparison between the covariance and
its regonstructed equivalent can be made to assure that at least no
gross mistakes have been made. It may be desirable to apply more
or less sophisticated techniques of confidence level verification
and testing to the reconstructed covariances as well as the distrib-
utions of the mission parameters for which the Monte Clarlo analysis
is being performed.

For certain mission analysis situations, it may be desirable
to perform a combined linear-Monte Carlo analysis. That is, linear
methods of covariance propagation and modification may be applicd
to certain parts of the analysis where it is known that the linearity
assumption is perfectly valid. Other parts of the analysis, where

linearity does not hold, may be treated with Monte Carlo methods.
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. In situations such as assessing a series of midcourse maneuvers,
the error sources may be sampled directly without having to sample
from a covariance. This will be possible only when the various error

sources are independent of one another.

P

R e I e
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